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ABSTRACT 

Performance-based design rely on evaluating structural efficiency by fragilities. Seismic fragilities are the 

probability that the structural response of a system overcomes specified limit states for given seismic intensity 

measure. Usually these curves are obtained by scaling seismic accelerograms by a reference intensity measure (e.g. 

single/multiple ordinates of the pseudo-acceleration response spectrum or peak ground acceleration). This 

approach, together with Monte Carlo simulation, overcomes the problem of the limited number of natural recorded 

ground motions available for fragility analysis, but it is not accurate to describe the probability law of the original 

unscaled records. Furthermore, if the dependence between the intensity measure and various system demand 

parameters (e.g. max inter-story displacement) is weak the fragility with these intensity measures provides limited 

if any information on the structural seismic performance. The aim of this paper is to estimate fragilities using 

standard and alternative approaches for a complex multi-degree of freedom structural system. In the alternative 

approach the seismic inputs to the system are described through the site seismic activity matrix. An actual multi-

degree of freedom structural system is considered as a case study. In particular, a school building in Norcia is used 

to show standard and alternative approaches in fragilities estimation. 

 

1 ITRODUCTION 

Seismic fragilities are the probability that the 
structural response of a system overcomes 
specified limit values for given seismic intensity 
measures (IMs). Performance-Based Earthquake 
Engineering (PBEE) ambition is to evaluate 
structural efficiency by fragility analysis. The 
Federal Emergency Management Agency 
(FEMA) recommends to estimate the seismic 
fragility curve by a standard approach based on 
scaling the seismic accelerograms with a 
reference intensity measure IM (FEMA P-58 
2012a). Commonly the incremental dynamic 
analysis (IDA) is used to develop fragility 
analysis. The IDA yields a distribution of results 
at varying intensities that can be used to generate 
a collapse fragility (FEMA P-58 2012a). This 
approach, together with Monte Carlo simulation, 
overcomes the problem of the limited number of 

natural recorded ground motions available for 
fragility analysis.  

Two groups of IMs are usually used to define 
the seismic fragilities: (i) functional of samples of 
seismic ground acceleration process A(t), such as 
peak ground acceleration (PGA); (ii) functional 
of filtered version of samples of A(t), e.g. 
single/multiple ordinates of pseudo-acceleration 
response spectrum Sa(T) for different structural 
system periods T (Lopez Garcia and Soong 2003; 
O’connor and Ellingwood 1992). In particular, 
the IMs in the second group, that are widely used 
to define the fragilities, depend on the kind of 
system demand parameter D (e.g. max inter-story 
displacement) on which the analysis is based 
(Ebrahimian et al. 2015; Kwong et al. 2015a, 
2015b, 2015c). 

 

The usefulness of standard procedures based on 

scaled seismic ground motion acceleration is 

indisputable, but it was shown not to be accurate 

when describing the probability law of the 



 

original unscaled records (Grigoriu 2010). 

Fragilities based on scaled ground motions 

provide limited if any information on the seismic 

performance of structural systems. Moreover, the 

dependence between the D and IM plays a 

fundamental role in the fragilities estimation 

(Grigoriu 2016). If they are independent, the 

obtained fragility can provide limited information 

on the performance of the structural system. One 

of these Authors (Grigoriu 2016) showed that the 

fragilities defined as function of Sa(T) for 

nonlinear single degree of freedom (SDOF) 

system to seismic acceleration process A(t) have 

large uncertainties when D and Sa(T) are weakly 

correlated. Furthermore, the fragilities defined as 

function of multiple ordinates of Sa(T) have poor 

improvements in reference to the case of single 

ordinate of Sa(T). It was demonstrated that the 

dependence between IMs and various system 

demand parameters, D, is weak for nonlinear 

system and also for complex multi-degree of 

freedom (MDOF) linear structures (Ciano et al. 

submitted; 2018;  Grigoriu  2016). 
 

The aim of this work is to estimate fragilities by 

an alternative approach as proposed in (Kafali 

and Grigoriu 2007; Radu 2017; Radu and 

Grigoriu 2018) for a complex multi-degree of 

freedom structural system and to compare the 

results to those obtained by the standard 

approach. In the alternative approach the process 

A(t) is defined starting from the site seismic 

activity matrix (SAM), in order to define samples 

of the seismic acceleration process A(t) by an 

alternative IM based on two parameters (e.g. 

vector-valued IM): the earthquake moment 

magnitude m and the distance r from the seismic 

source to system site. The SAM, for selected site, 

provides, for each couple (m, r), the earthquake 

probability of occurrence. An actual multi-degree 

of freedom structural system, a school building in 

Norcia, Italy, is considered as case study. This 

construction is equipped with nonlinear 

dissipative steel bracing, and its numerical model 

is calibrated using experimental data obtained by 

the Italian National Seismic Observatory.   
Finally, the results of the fragilities obtained 

by the two approaches is shown. Different scalar 
IMs are used to estimate fragilities by the 
standard method and the influence of the 
dependence between D and IM on these curves 
are is shown. It is remarked that the estimation of 
fragility curves by the procedure based on SAM 

can provide information on the seismic 
performance of the structural system.  

2 BACKGROUND 

2.1 Problem definition 

Let I be the set of demand parameters which 

yield a structural failure. The fragility can be 

defined as 
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i.e. the probability that a structural system enters 

a damage state given a ground motion with 

scalar/vector intensity measure 
 

IM=ξ.  The 

quantities 1(·) and fD|IM(·|ξ) indicate the indicator 

function and probability density function (PDF) 

of the conditional variable D|(IM=ξ),  

respectively. The fragility in (1) is usually 

estimated from the structural response to scaled 

seismic time histories, a(t) of the stochastic 

process A(t) (Baker 2010), and its accuracy 

depends on the scaling procedure, the sample size 

and the IMs properties. 

    When D and IM are strongly dependent, the 

random variable D|IM has small variance, i.e. 

fD|IM(·|ξ) is concentrated about its mean value. 

On the contrary, when D and IM are weakly 

dependent the random variable D|IM has large 

variance. In the limit, fD|IM(·|ξ) becomes a d- 

function or D and D|IM  have the same PDF 

when D and D|IM are perfectly correlated or 

independent, respectively (Grigoriu 2016). In the 

latter case, the fragility in (1) does not depend on 

ξ. Within this context, especially if (1) is 

estimated by the standard approach, it is crucial 

to quantify the dependence between the demand 

parameter D and various IM definitions to 

implicitly determine whether or not fragilities, 

defined as function of the commonly used IMs, 

can provide useful information for PBEE of 

actual complex multi-degree of freedom (MDOF) 

linear and nonlinear structural systems. If the 

dependence between D and IM is strong, the 

fragility Pf(ξ)  gives accurate information (Ciano 

et al. submitted; 2018). The opposite holds when 

the dependence between D and IM is weak. 

Several statistical tools can be used to investigate 

the dependence between the random variables D 

and IM, which includes correlation coefficients,  



 

 
Figure 1. Scheme of the monitoring system of the Norcia 

school building. 

copula models and multivariate extreme value 

theory (Grigoriu 2016). In this work an example 

of scatter plots of D and IM are used to give 

information on their correlation coefficients. 

2.2 Demand parameters  

     Let X(t) be the response vector-valued process 

of an arbitrary MDOF structural system to the 

ground acceleration A(t). The demand parameter 

is defined as 

|))((|max0 tXhD t =  (2) 

where t is the time length of A(t), while h(·) is a 

function mapping the response X(t) into the 

system demand parameter of interest, e.g. max 

inter-story displacement. In this work the 

maximum absolute displacement of each degree 

of freedom, Dd, is considered as demand 

parameter in the fragility analysis.   

2.3 Intensity Measures (IMs) 

The IMs used in PBEE to scale seismic 

acceleration ground motion are divided into three 

broad categories: (i) non-structures-specific scalar 

IMs; (ii) structures-specific scalar IMs; (iii) 

vector-valued IMs. A complete classification of 

the most known IMs in literature is reported in 

(Ebrahimian et al.  2015).  In this paper the 

following IMs are considered to estimate the 

fragilities by standard approach 
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where T1 and T3 are the first and third natural 

periods of the MDOF structural system, 

respectively, with associated damping ratios  z1 

and z3; Ih is the Housner intensity (Housner 

1952); S*(T1,z1, C, a) is the multi-parameter 

scalar IM functional of IM2 (Cordova et al. 2000) 

with C=2 and  a=0.5. In this work T1 is selected 

since it is the fundamental period of the structure 

in x-direction (Figure 2) as is customary in the 

literature (Ebrahimian et al.  2015); T3 is also 

considered because it assumes a large 

participating mass in the y-direction (Figure 2). 

Details of the structure modal parameters can be 

found in (Ciano et al.  2018). 

3 CASE STUDY NUMERICAL MODEL 

ANALYSIS 

   The school in Norcia is used as benchmarks for 

many studies in Italy. Particular interest comes 

from the continuous monitoring system, powered 

by Italian National Seismic Observatory, at 

several locations in the building (Figure 1). The 

structural system consists of a reinforced concrete 

frame (RCF) on four floors with a dissipative 

bracing system, Buckling-Restrained Axial 

Dampers (BRAD), and inverse beams foundation. 

Details on the school building are reported in 

(Ciano et al. 2018). The RCF and foundation are 

modeled with classical beam elements, while for 

the BRAD elements the constitutive law (Wen 

1976) is used. Experimental data by the 

monitoring system were used to calibrate the FE 

model.  

    IDA analyses are performed to evaluate the 

displacement demand parameter Dd for each 

compatible acceleration time histories, while in 

 
Figure 2. Seismic directions used in the analyses and 

reference node locations. 



 

system degree of freedom when the model is 

subjected to different samples of A(t) in x or y 

global-directions (Figure 2). The first results for 

linear and nonlinear structural analyses are 

reported in (Ciano et al. submitted) where 

spectra-compatible acceleration time histories 

were used for the fragilities estimation. In this 

work linear IDAs are performed to access 

fragilities by both standard and alternative 

methods when the model is subjected to 

simulated stochastic process and stochastic 

process by SAM of actual school site,  

respectively.  

    The strong event recorded in Norcia on 

October 30th, 2016 is used to calibrate the 

stochastic non-stationary process A(t).    

4 SEISMIC GROUND ACCELERATION 

STOCHASTIC PROCESSES  

4.1 Non-stationary model #1 

Let Z(t) be a non-stationary stochastic process 

described by (Grigoriu et al. 1988) 

))(()()( tYtctZ =  (8) 

where Y(t) is a real-valued zero-mean wide sense 

stationary process with variance sY
2 and one-

sided spectral density GY(ω), c(t) and f(t) are 

amplitude and frequency modulation function, 

respectively.  The time-dependent  variance of  

Z(t) has expression  

222 )()( YZ tct  =  (9) 

 
Figure 3. Acceleration time history AC01-1 (Figure 1) 

recorded in Norcia on October 30th, 2016 (top); simulated 

sample of the non-stationary process Z(t) in (8) (bottom). 

 

Figure 4. Seismic activity matrix of the Norcia school 

building site. 

while the one-sided spectral density can be 

described as 

)()(),( 2  YZ GtctG =  (10) 

in order to define the process in (8) as a 

uniformly modulated process.  

The AC01 (Figure 1) experimental components of 

the October 30th, 2016 event (m = 6.5 and r = 5 

km) with PGA = 0.55 g are used to calibrate the 

model (8) in order to generate ns independent 

samples of zi(t), i = 1,...,ns, of the process Z(t). 

Figure 3 shows the experimental record (top 

panel) in the building x-direction (Figure 2), i.e. 

AC01-1 in Figure 1 together with one sample of 

simulated acceleration time history using the 

model in (8) (bottom panel). 

4.2 Non-stationary model #2 

Let W(t) be a non-stationary empirically 

calibrated stochastic process. Samples of  W(t) 

can be genereted by the approach proposed in 

(Yamamoto and Baker 2013) using the inverse 

wavelet packet transform (WPT)  
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where 𝑏𝑗,𝑘
𝑖 is the i-th set of wavelet packet 

coefficients at the j-th scale parameter and k-th 

translation parameter, 𝛾𝑗,𝑘
𝑖  is the wavelet packet 

function, and 2N denotes the steps number in the 

time series. The wavelet packet coefficients are 

evaluated on past earthquake scenario as in 

(Yamamoto and Baker 2013). The wavelet packet 

coefficients need to be evaluated as a function of 

the scenario parameters, such as site feature and  



 

 

 

Figure 5. Samples w(t) of model #2 stochastic process 

based on the site seismic activity matrix in Figure 4: m = 

7.5 and r = 10 km (top); m = 6.5 and r = 5 km (middle); m 

= 4.5 and r = 50 km (bottom). 

magnitude, to generate a ground motion 

representing a particular scenario. To predict a 

future earthquake scenario a two-stage  regression 

analysis is performed based on m, r and the 

average shear-wave velocity within 30 m depth 

VS30 as predictor variables.  

    Figure 4 shows the SAM of the Norcia school 

building site given by the Italian National 

Institute of Geophysics and Volcanology, i.e. the 

probability 𝑣𝑖𝑗 that a earthquake occurs at site for 

a couple of (mi, rj). The disgregation plot (Figure 

4) is defined as the 2% probability of excess in 50 

years with 84th percentile. Different ns samples 

wi(t), i = 1,...,ns, of W(t) are generated using 

Equation                                      (11) and the site 

scenario parameters given by the SAM in Figure 

4 for VS30=678 m/s.  

   Figure 5 shows three samples of w(t) for the 

scenarios: (m = 7.5,  r = 10 km), (m = 6.5,  r = 5 

km) and  (m = 4.5,  r = 50 km) in the top, middle 

and bottom panel, respectively. The sample w(t) 

in the middle panel has PGA = 0.58 g. 

 

 

 

 

 

 

 

 
Figure 6. Fragilities against intensity level ξ for different 

definitions of IMs at node #3 with a=0°, displacements Ddx 

for limit state 𝐷̅𝑑𝑥 = 2 cm – linear analysis. 

5 FRAGILITIES ESTIMATION 

5.1 Standard approach 

The seismic fragility analysis, as also 

recommended by FEMA, is commonly based on 

a four-steps algorithm consisting of scaling 

seismic accelerograms by a reference IM: 

1. selection of a finite set of intensity 

measures {ξk}, k =1,..., N; 

2. generation of ns = 500 samples of A(t) = 

Z(t), i.e. ai(t) = zi(t), i = 1,...,ns; 

3. for each of the values {ξk} scale the ns 

acceleration records in order to have the 

intensity level IM =  ξk,  ξk > 0; 

4. for each of the values {ξk} estimate 

fragility as  


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where 1(·) is the indicator function and dk,j, 

j=1,..., ns, are samples of the demand parameters 

computed for each intensity level {ξk} by IDA.  

     

 

Figure 7. Scatter plots of ns =500 samples of (PGA, Ddx), (𝑆𝑎(𝑇1)/(2𝜋/𝑇1)2 , Ddx), (𝑆𝑎(𝑇3)/(2𝜋/𝑇3)2 , Ddx), (𝐼ℎ , Ddx), 

(𝑆∗(𝑇1, 𝐶, 𝛼)/(2𝜋/𝑇1)2, Ddx), a=0°, at node #3 – linear analysis. 

 



 

Figure 6 reports fragility curves estimated by 

four-steps algorithm described above, using 

different IM definitions (IMl , l=1,...,5 (3)-(7)) 

and linear IDA analyses for the demand 

parameter Ddx (i.e. the maximum absolute 

displacement in x-direction) at node #3, assuming 

earthquake direction a=0° (Figure 2) and limit 

state 𝐷̅𝑑𝑥   = 2 cm. Results show the fragilities 

variability with the IM used in the analysis. The 

role of IMs on the   accuracy  of   seismic   

fragilities  when using this standard procedure 

was widely  discussed in (Ciano et al. submitted) 

for the same case study. The ability of the 

standard approach to provide accurate fragility 

estimation can be evaluated investigating on the 

dependence between Ddx and the various IMs 

(Grigoriu 2016). Figure 7  shows scatter plots of  

ns =500 samples of  the demand parameter Ddx, 

computed at node #3 with seismic direction 

a=0°, against the intensity measures IMl, 

l=1,...,5, one for each panel from left to right, 

respectively, together with the estimated 

correlation coefficient. Damping ratio is assumed 

to be z1 = z3 =z=5% for  IM2, IM3, IM5. 

   The results presented in Figure 7 demonstrated 

that IM2 (second panel from left) is the best 

candidate to provide an accurate fragility curve 

for the selected demand parameter since the 

conditional variable Ddx|IM2 has small variance 

(i.e. Ddx and IM2 are correlated), while, in this 

case, IM1 (left panel), commonly used in PBEE, 

represents an unsatisfactory intensity measure 

since the low correlation coefficient between Ddx 

and IM1 will determine a fragility, which provides 

poor information on the seismic performance. 

The results has not general validity since it was 

demonstrated that IMs can be both strongly and 

weakly correlated with the demand parameter 

depending on the selected structural response of 

interest and the earthquake direction (Ciano et al. 

submitted). 

 

5.2 Alternative approach 

It is possible to estimate fragilities using virtual 

acceleration time series according to the model in 

Equation  (13). The following two-steps 

algorithm can be used: 

1. generation ns = 500 samples of A(t) = 

W(t), i.e. ai(t) = wi(t), i = 1,...,ns, for each 

couple (m, r) by SAM (Figure 4); 

2. for each couple (m, r) estimate fragility as  

 
Figure 8. Fragility surface against couple (m, r) at node #3 

with a=0°, displacements Ddx for limit state 𝐷̅𝑑𝑥 = 2 cm – 

linear analysis. 


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where 1(·) is the indicator function and dk,j, 

j=1,..., ns, are samples of the demand parameters 

computed for each couple (m, r) by IDA. 

Equation  (14) provides a fragility surface giving 

the probability that structural response of a 

system overcomes specified limit states for given 

magnitude m and distance site-to-source r (Kafali 

and Grigoriu 2007). Given the parameters (m, r) 

the probability law of the seismic ground 

acceleration is defined completely, and the 

inconvenience of scaling procedures does not 

occur (Grigoriu 2010). 

     Figure 8 reports the fragility surface  

computed by linear IDA for the demand 

parameter Ddx, limit state 𝐷̅𝑑𝑥  = 2 cm, at node #3 

for earthquake direction a=0° (Figure 2).  

It is worth noting that if one uses the parameters 

m = 6.5 and r = 5 km, i.e. the conditions 

happened on October 30th, 2016 at the school site, 

the estimated Pf is about 0.3. The same value can 

be obtained from the fragility curve by IM2 in 

Figure 6 for the intensity level ξ = 0.5.  

The fragility surface that uses SAM can be also 

obtained by crossing theory rather than with a 

raw Monte Carlo approach in order to provides 

accurate results with a lower computational cost 

(Kafali and Grigoriu 2007). 

 



 

6 CONCLUSION 

In performance-based earthquake engineering 

the seismic fragilities are commonly estimated by 

standard approach based on scaling the seismic 

accelerograms with a reference intensity measure 

(IM). The shortcomings of this method are: (i) the 

scaled seismic accelerograms do not describe 

accurately the probability law of the unscaled 

records; (ii) a strong dependence is required 

between the demand parameter D of the structural 

system, on which the fragility analysis is based, 

and the IM used for scaling, in order to have 

accurate fragilities. The standard approach 

provides limited if any information on the seismic 

performance of the structural system for weak 

dependence between D and IM, and scaling 

seismic ground-accelerations is not 

recommended. 

An alternative approach to estimate seismic 

fragilities was recently proposed by the third 

author, which is based on the site seismic activity 

matrix and is able to generate non-stationary 

seismic accelerograms depending on the 

earthquake moment magnitude and the source-to-

site distance. This method gives seismic ground 

acceleration for different earthquake levels 

without using the scaling procedure typical of the 

standard approach. In this paper fragility analysis 

based on linear incremental dynamic analysis was 

performed using the two described approaches on 

an actual complex multi-degree of freedom 

structural system, a school building in Norcia, 

Italy. The numerical structural model was 

calibrated using experimental data obtained by 

the Italian National Seismic Observatory. The 

estimated fragility curves and surface 

demonstrated the high variability of the results 

depending on the approach used and on the 

selected intensity measure. These results should 

be seriously taken into account in Performance-

Based Earthquake Engineering (PBEE) when 

estimating structural performance by fragility 

analysis in order to avoid unreliable designs. 
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