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ABSTRACT  

A versatile hysteretic model based on plastic and damage mechanisms is presented here for seismic analysis of 

inelastic structures, that could serve as a simple approach to describe a vast range of experimentally observed 

behaviours. To begin with, piecewise linearization of the initial backbone curve is carried out, each linear segment 

being defined by an in-parallel combination of elastic-perfectly plastic (EPP) and elastic-softening damage (ESD) 

mechanisms. Each pair of plastic and damage mechanisms is expressed as function of a damage index depending 

on a damage variable. The i-th damage mechanism is also expressed in terms of two additional parameters related 

to the points defining the piecewise linear approximation of the initial backbone curve. Then, simulation of 

structural components is used to exemplify the reproduction of the main typologies of hysteretic models with 

different types of degradation. Comparison with experimental results available in the literature is subsequently 

carried out to calibrate the proposed model, with reference to r.c. columns with low building standards. Finally, 

nonlinear seismic analysis of a single-degree-of-freedom system, equivalent to a four-storey r.c. framed structure 

designed with a former seismic code, is used to generate the capacity boundary curve starting from the initial 

backbone curve.  

1 INTRODUCTION 

Observation of structural damage and collapse  
in past earthquakes has underlined the need for a 
proper description of the nonlinear behaviour of 
buildings, especially in the case of high seismic 
loads and low building standards (FEMA P440A 
2009). It can be noted a great deal of difference in 
the force-displacement relationship corresponding 
to the monotonic loading (i.e. the initial backbone  
curve) and the envelope of the hysteretic response 
(i.e. the cyclic envelope), as the latter may be 
heavily loading-history dependent. Therefore, it 
is essential to develop a suitable hysteretic model 
that incorporates degradation laws of stiffness 
and strength with increasing inelastic deformation 
and upon reversals of loading cycles. In detail, 
stiffness degrading behaviour can be grouped in 
three main categories: i) with the same unloading 
and reloading degrading stiffness, as a function of 
the peak inelastic displacement; ii) with constant 
unloading stiffness and degrading reloading 
stiffness; iii) with different degrading laws for the 

unloading and reloading stiffnesses. In addition, 
structural systems frequently show a combination 
of two types of strength degradation, related to 
the peak inelastic displacement, with regard to 
increasing loading cycles, and related to the 
amount of hysteretic energy dissipation, in the 
case of repeated cyclic displacement. In-cycle 
strength degradation may also occur, which 
correspond to a loss of strength coupled with a 
negative post-yield stiffness in a given cycle. 
Furthermore, pinching phenomenon produced by 
cracks is frequently observed, characterized by  
notable reductions in reloading stiffness followed 
by recovery when displacement is imposed in the 
opposite direction. 

By means of the various types of hysteretic 
behaviour above described, a great number of 
polygonal and smoothed hysteretic models with 
different levels of complexity are employed. 
These models follow evolutionary rules based on 
the actual strain combined with non-degrading or 
degrading properties dependent on the damage 
level, being able to be classified in three main 
groups: i) non-evolutionary non-degrading, with 
elastic unloading and reloading branches (e.g. the 



 

elastic perfectly-plastic and elastic-plastic, with 
hardening or softening, models); ii) evolutionary 
non-degrading, with reloading rules depending on 
the actual level of strain (e.g. Takeda et al., 1970, 
and Song and Pincheira, 2000, polygonal models 
and smoothed models like those of Bouc, 1967, 
Wen, 1976, Sivaselvan and Reinhorn,  2000, and 
Vaiana et al. 2018); iii) evolutionary degrading, 
characterized by unloading and reloading rules as 
function of the damage state (e.g. Park et al., 
1987, Ibarra et al., 2003, and Do and Filippou, 
2018, models).  

The deterioration of the backbone curve and 
cyclic deterioration rate are generally controlled 
by a continuously evolving damage variable () 
and corresponding damage index (). First 
damage functionals have been those based on the 
kinematic ductility and hysteretic energy 
dissipation and their combinations (Cosenza et al. 
1993; Bozorgnia and Bertero 2003). A damage 
variable controlled by hysteretic energy 
dissipation has been related to parameters 
representative of cyclic deterioration as well as 
deterioration of the backbone curve (Ruiz-Garcia 
and Miranda 2005). Afterwards, to account for 
the loading history, the concept of primary and 
follower load cycles has been applied to indexes 
based on the cumulative inelastic deformations 
(Krätzig et al. 1989) and hysteretic energy 
(Mehanny and Deierlein 2001). The cyclic 
deterioration rate can be also controlled by using 
an improved parameter related to the energy 
dissipation, where weights of the energy 
dissipation increment under positive or negative 
forces are introduced to differentiate the effect of 
deformations exceeding the previous maximum 
values from the effect of lower deformations than 
these maximum values (Do and Filippou 2018). 

In the present work, a hysteretic model based 
on plastic and damage mechanisms is proposed 
for assessment of the nonlinear behaviour due to 
strength and stiffness degradation. The effects of 
the model parameters are highlighted with 
reference to some typologies of hysteretic laws. 
Then, the proposed model is calibrated by 
experimental results available in the literature, 
which utilize r.c. columns subjected to monotonic 
and cyclic displacement histories (Sezen 2002). 
Finally, nonlinear seismic analysis of a single-
degree-of-freedom system, equivalent to a four-
storey r.c. framed structure designed with a 
former seismic code, is used to highlight that a 
more realistic estimation of the deformation 
capacity can be obtained using the proposed 
hysteretic model. 

2 PLASTIC-DAMAGE HYSTERETIC 

MODEL 

The analytical formulation of the proposed 
combined plastic-damage (CPD) hysteretic model 
is summarized below, with the main focus on the 
elastic-perfectly plastic (EPP) and elastic-
softening damage (ESD) mechanisms. 

2.1 Plastic mechanisms 

The initial backbone curve with monotonically 
decreasing stiffness and increasing displacement 
until reaching final zero stiffness is fitted with a 
four-segment approximation (Figure 1a), 
distinguishing positive and negative forces (F±) 
and displacements (d±). By using such piecewise 
linear fit and leaving aside damage (i.e. a damage 
index =0), it is possible to couple the i-th linear 
segment with the corresponding i-th plastic 
mechanism (Figure 1b) described by an elastic-
perfectly plastic law expressed as: 

( )P,i P,i y ,i 1 y ,i 1 y ,iF K d d ,  d d d      
− −=  −    (1) 

( )P,i yP,i P,i y ,i y ,i 1 y ,iF F K d d ,  d d      
−= =  −   (2) 

FyP,i and dy,i being the force and displacement at 
the i-th yielding point and KP,i the elastic 
stiffness.  
 

 

(a) 

 
(b) 

Figure 1. Illustration of the proposed hysteretic model with 
plastic mechanisms without damage (=0) for monotonic 
(a) and i-th cyclic (b) EPP mechanisms. 



 

Deterioration in strength and stiffness is not 
modelled and the unloading stiffness of the i-th 
plastic mechanism is as the elastic one. Note that 
the reloading stiffness resulting from the 
combination of N plastic mechanisms is less than 
or equal to the unloading one. 

A second shape of the initial backbone curve is 
that exhibiting multi-linear elastic hardening with 
a final positive-stiffness segment. In this case, the 
last (i.e. N-th) plastic mechanism of the hysteretic 
model will be represented by an elastic-linear 
law. Moreover, the proposed model is also able to 
describe cases involving quadrilinear elastic-
hardening-negative residual laws, with negative 
stiffness and low-strength zero-stiffness segment, 
respectively, by using a negative N-th elastic-
perfectly plastic law.  

2.2 Plastic and damage mechanisms 

The proposed hysteretic model incorporates 
deterioration in stiffness and strength for loading 
cycles of increasing amplitude. Moreover, the 
cyclic deterioration is explicitly incorporated in 
the model by modifying the initial backbone 
curve, representative of the response for 
monotonically increasing loading, as function of 
the cyclic loading history. To ensure this result, 
the overall hysteretic behaviour is evaluated 
through the overlapping of N plastic (Figure 2a) 
plus N damage mechanisms (Figure 2b), where N 
corresponds exactly to the number of segments of 
the piecewise linear fit of the initial backbone 
curve. Specifically, the i-th damage mechanism 
presents an elastic-softening law characterized by 
a first linear upward branch until the attainment 
of yield displacement of the corresponding i-th 
plastic mechanism 

( )D,i D,i y ,i 1 y ,i 1 y ,iF K d d ,  d d d      
− −=  −    (3) 

with an elastic stiffness 

D,i iK K  =   (4) 

  being a damage index function of a damage 
variable .  

Since the stiffness of the i-th segment of the 
backbone curve results from an in parallel 
combination of plastic (Figure 3a) and damage 
(Figure 3b) mechanisms 

i P ,i D,iK K K  = +  (5) 

the initial plastic stiffness can be written as 

( )P,i iK 1 K  = −   (6) 

with damage index  allowing for a separation 
between positive (+) and negative ( −) effects. 
At each step of the loading history, the unknown 

stiffnesses of the plastic (i.e. KP,i, i=1,..,N) and 
damage (i.e. KD,i, i=1,..,N) mechanisms need to be 
updated, on the basis of the current level of 
damage defined by parameter  by means of 
Equations (4) and (6). It should be noted that the 
i-th pair of plastic and damage mechanisms is 
able to reproduce the degradation of stiffness of 
the corresponding segment of the initial backbone 
curve. In fact, the fourth zero stiffness segment of 
the backbone curve shown in Figures 3a,b is not 
reproduced when a value of >0 is considered. 
Moreover, the proposed hysteretic model allows 
for the reproduction of a softening segment 
and/or a residual plateau of the force-
displacement law through a final negative 
coupling of plastic and damage mechanisms. 
Finally, pinching effect can be reproduced 
modifying the unloading/reloading branch of the 
i-th cyclic ESD mechanism. 
 

 

(a) 

 
(b) 

Figure 2. Main cases for the proposed hysteretic model with 
plastic and damage mechanisms (0<<1): monotonic EPP 
(a) and ESD (b) mechanisms for a backbone curve with 
hardening. 

 
Thereafter, the second linear downward 

branch of the i-th monotonic elastic-softening 
damage (ESD) mechanism comes out of the 
expression (Figure 3b) 

( )D,i yD,i sD,i y ,i y ,i uF F K d d ,  d d d       = −  −    (7) 

where the stiffness of the softening branch is 



 

equal to 

sD,i i D,i i i i P,iK K K K
1


   




       


=  =   =  

−
 (8) 

being 

( ) ( )i y ,i y ,i 1 u y ,id d d d     
−= − −  (9) 

where du is the displacement at the ultimate point 
of the initial backbone curve. A strength decay of 
the latter is initially introduced by parameter i, 
whose value is generally different for each ESD 
mechanism, and its cyclic deterioration is 
subsequently controlled by damage index .  

 

 

(a) 

 
(b) 

Figure 3. Illustration of the proposed hysteretic model with 
plastic and damage mechanisms (0<<1): (a) i-th 
monotonic EPP (a) and ESD (b) mechanisms. 
 

It should be noted that the combination of i 
and  also allows the reproduction of cyclic (i.e. 
strength loss occurring in cycles subsequent to 
the current loading cycle) and in-cycle (i.e. 
strength loss occurring during the loading cycle) 
degradation. Finally, the unloading stiffness of 
the i-th cyclic EPP) mechanism is assumed equal 
to that of the loading branch (Figure 4a), while  
the elastic-softening damage (ESD) mechanism is 
characterized by: 

uD,i i D,i i i i P,iK K K K
1


   




      


=  =   =  

−
 (10) 

given 

( )i i u i id d d     =  −   (11) 

where d' is the displacement corresponding to the 
initial point of the unloading phase that is part of 
the softening branch (Figure 4b). In so doing, the 
unloading branch of the i-th ESD mechanism is 
oriented towards the origin. Moreover, the 
unloading and reloading stiffness reductions are 
governed by parameter i, which is expressed as 
function of i, while their cyclic deterioration 
here again depend on damage index . As can be 
observed, the parameter i (i=1,..,N) is function 
of the points defining the piecewise linear 
approximation of the initial backbone curve, 
taking a different value for each ESD mechanism, 
while parameter i (i=1,..,N) depends on 
parameter i and displacement corresponding to 
the initial point of the unloading phase. 
 

 

(a) 

 
(b) 

Figure 4. Illustration of the proposed hysteretic model with 
plastic and damage mechanisms (0<<1): (a) i-th cyclic  
EPP (a) and ESD (b) mechanisms. 

 
A simplified function is chosen to represent 

the damage growth, which is only a first step, 
although theoretically sound damage parameters 
are available in literature and could be 
implemented within the framework of the 
proposed model (Do and Filippou 2018). In 
particular the cyclic deterioration of the plastic 
and damage mechanisms described above is 
controlled by a damage index , which involves 
a damage variable  representing the inelastic 
deformation, varying between =0, when there is 



 

no damage, and =1, when failure occurs 
(Kappos 1997). The lower bound threshold of 
damage variable  (i.e. e) corresponds to a 
substantially linear elastic response, highlighting 
threshold below which no damage occurs. 
Moreover, the upper bound threshold (i.e. u) 
represents the value of  at which failure occurs, 
corresponding to part or all of the ultimate 
capacity of the system under monotonically 
increasing load (i.e. mon). The shape of the ever-
increasing - law is  

for e0,       =   (12a) 

fore
e

u e

   ,  0


 

   
 

 
  

 

 −
=   

− 
 (12b) 

 being the current value of the damage variable 
by nonlinear seismic analysis and  an additional 
degradation rate parameter. Further details can be 
found in a previous work (Mazza 2019). 

3 DAMAGE EVOLUTION IN THE 

PLASTIC-DAMAGE MODEL 

In order to assess the effects of the damage 
index variability on the strength and stiffness 
degradation of the CPD model, a sensitivity 
analysis is carried out considering constant values 
of  selected in the range [0-1[. In detail force-
displacement laws obtained by overlapping the 
elastic perfectly-plastic (i.e. F(EPP) and d(EPP) in 
Figures 5a-7a) and elastic-softening damage (i.e. 
F(ESD) and d(ESD) in Figures 5b-7b) mechanisms 
are compared with their combined response (i.e. 
F(CPD) and d(CPD) in Figures 5c-7c). A multilinear 
(initial) backbone curve is also added (see red 
line) to the CPD mechanisms, whose main points 
define the i and i parameters of each pair of 
plastic and damage mechanisms (see Equations 9 
and 11). Indeed, a few of cycles are reproduced in 
Figures 5-7, on the assumption that dmax<du. 
Moreover, all curves are normalized with 
reference to ultimate values of force (i.e. Fu

(CPD)) 
and displacement (i.e. du

(CPD)) of the combined 
plastic-damage mechanisms. As can be observed, 
the hysteretic energy dissipation of the EPP 
mechanisms declines for increasing values of 
 while the opposite is the case for the ESD 
mechanisms. The limit values =0 (Figure 5) and 
=0.99 (Figure 7) correspond to zero 
contribution of the ESD and EPP mechanisms, 
respectively. The F(CPD)-d(CPD) curve always has a 
peak oriented stiffness degradation at reloading, 
pointing to the maximum inelastic displacement 
in the loading direction when taking >0, and an 
origin-oriented response for high values of   

(a)  

(b)  

(c)  
Figure 5. Hysteretic models for the damage index =. 

 

(a)  

(b)  

(c)  
Figure 6. Hysteretic models for the damage index =. 



 

(a)  

(b)  

(c)  
Figure 7. Hysteretic models for the damage index =. 

 
A good fit between low values of  and 

hysteretic response is obtained, highlighting a 
ductile behaviour characterized by full hysteresis 
loops and considerable energy dissipation for 
≤0.5 (Figures 5 and 6). On the other hand, 
brittle behaviour with moderate to severe 
pinching effects during the reloading phase 
corresponds to cases where 0.5 (Figure 7). 
The force-displacement plastic-damage cyclic 
envelope moves inward as a result of cyclic 
degradation, leading to a decrease in strength and 
stiffness as a function of  Note that pinching 
effects are governed by the ESD mechanisms of 
the proposed model, which are in turn dependent 
on the cyclic reversed loading of structural 
components subjected to cyclic reversals  

Effects of different evolution laws of damage 
on the CPD model are shown in Figure 8, where 
varying values of the damage index () are 
assumed (Equations 12a,b), as a function of a 
damage variable the same as the imposed 
displacement (i.e. =d). In order to reveal how 
much the damage index depends on the 
contribution of maximum inelastic deformation 
and energy dissipation, three values are 
considered for the exponent  representing the 
rate of degradation: i.e. =1 (Figure 8a), =0.5 
(Figure 8b) and =0.2 (Figure 8c). 

(a)  

(b)  

(c)  
Figure 8. Hysteretic models for variable damage index Y. 

 
Let us begin by saying that the increase of 

damage index  for decreasing values of 
exponent  is more likely to occur when the 
damage variable ≤u is assumed, while less 
notable changes of  are observed when →u. 
Significant differences in the unloading and 
reloading stiffnesses are found when comparing 
the cyclic responses obtained with =1 (Figure 
8a) and <1 (Figures 8b,c). The hysteretic energy 
dissipation corresponding to =0.5 and =0.2 (i.e. 
poorly equipped structural members) is 
comparable and lower than in the case of =1. A 
sudden reduction in strength is also observed for 
low values of  (e.g. =0.2). Cyclic degradation 
effects characterized by loss of strength as well as 
stiffness occur in subsequent cycles. This result 
highlights that a variable damage index  instead 
of a simplified constant value is required for an 
accurate description of cyclic degradation. 

4 TEST STRUCTURES AND LOADING 

PROTOCOLS 

First, two full scale r.c. columns shown in 
Figure 9a, representative of frame members of 
existing buildings designed in line with a former 
building code, are considered as test structures for 
the experimental calibration of the proposed CPD 



 

hysteretic model. In particular, these specimens 
have square cross-sections and include heavily 
reinforced top and bottom beams, which simulate 
a rigid foundation and a rigid floor slab (Sezen 
2002). A longitudinal steel reinforcement ratio of 
2.5% is considered, assuming that the average 
yield and ultimate strengths of the longitudinal 
bars are 438 MPa and 645 MPa, respectively. An 
uniform spacing of the transversal ties is 
assumed, with measured yield and ultimate 
strengths equal to 476 MPa and 724 MPa, 
respectively Moreover, the average concrete 
cylindrical strength is about 21 MPa. Both 
specimens are subjected to a constant axial load 
of 667 kN, but have different cyclic lateral 
displacement histories. 
 

 
(a) Longitudinal and transversal sections. 

 
(b) Experimental loading protocol n.1. 

 
(c) Experimental loading protocol n.2. 

Figure 9. First test structure (units in mm). 

 

Specifically, the first specimen (corresponding 
to column n.4 of the experimental program) is 
subjected to a mostly monotonic protocol, 
characterized by cyclic displacements before the 
yield value (dy=26 mm) followed by a 
monotonically increasing lateral displacement 
until failure is reached (Figure 9b). On the other 
hand, a cyclic protocol is considered for the 
second specimen (corresponding to column n. 1 
of the experimental program) consisting in the 
application of three cycles of a fraction of the 
nominal yield value (dy), followed by sequences 
of displacement cycles increased incrementally 
(i.e. three cycles of dy, 2dy, 3dy, etc.) until failure 
occurs (Figure 9c).  

Afterwards, a four-storey r.c. framed building 
of regular 3m interstorey height and 5m long bays 
and symmetric plan (Figure 10), is considered as 
test structure for the numerical (nonlinear static 
and dynamic) investigation.  

 

 
(a) Plan. 

 
(b) Perimeter frame (Y direction). 

 
(c) Interior frame (Y direction). 

Figure 10. Second test structure (units in cm). 



 

The plane frames, whose geometric 
dimensions are shown in Figures 10b,c, represent 
the seismic behaviour of the building in the 
weakest direction (i.e. Y direction in Figure 10a) 
where flat beams in the interior frames are 
parallel to the direction of the floor slab. A 
simulated design of the framed building is carried 
out in accordance with a former Italian code 
(D.M. 1996), for medium-risk seismic region 
(seismic coefficient: C=0.07) and typical subsoil 
class (main coefficients: R=ε=β=1). The gravity 
loads are represented by a live load of 1.5 kN/m2 
on the top floor and 2.0 kN/m2 on the other 
floors, and a dead load of 5.0 kN/m2 on all the 
floors; an average weight of about 1.9 kN/m2 is 
considered for the masonry infill walls. Concrete 
cylindrical compressive strength of 25 MPa and 
steel reinforcement with yield strength of 375 
MPa are also considered. The design complies 
with the ultimate and serviceability limit states, 
satisfying minimum percentages of longitudinal 
bars for the r.c. frame members. The fundamental 
vibration period of the test structure along Y is 
equal to 0.71s, while the corresponding effective 
mass is equal to 82% of the total mass of the 
building. Further details on the design of the test 
structure can be found in a previous paper by the 
author (Mazza 2018). Seven recorded ground 
motions, reflecting the provisions of the Italian 
seismic code (N.T.C. 2018) for the geographical 
coordinates at the site in question (i.e. subsoil 
class B), are taken from the European Strong 
Motion database (Luzi et al. 2016) and scaled to 
match, on average, the design spectrum. The 
main data are reported in Table 1: i.e. earthquake, 
identification number (ID); magnitude (Mw), peak 
ground acceleration in the horizontal direction 
(PGAH) and corresponding scale factor (SFH). 
 
Table 1. Main data of the selected earthquakes. 

Earthquake ID  Mw PGAH SFH 

Friuli (aftershock) 65 6.0 0.336g 0.884 

Montenegro 93 6.9 0.363g 0.819 

Campano Lucano 146 6.9 0.176g 1.690 

Kalamata 192 5.9 0.297g 1.002 

Kalamata 192 5.9 0.240g 1.238 

Erzincan 250 6.6 0.513g 0.580 

South Iceland 1635 6.5 0.512g 0.582 

5 NUMERICAL RESULTS 

The proposed plastic-damage hysteretic model 
is first implemented in a homemade computer 
code for the pseudo-static (monotonic and cyclic) 
nonlinear analysis (Mazza and Mazza 2010), A 
set of EPP and ESD mechanisms is chosen to 
represent the piecewise fit of the initial backbone 

curve obtained by monotonic loading of the test 
structure. Before the numerical (cyclic) analysis, 
a piecewise linear approximation of the force-
displacement backbone curve of the first test 
structure, based on the experimental curve (see 
red line in Figure 11) corresponding to the mainly 
monotonic loading protocol (Figure 9b), is built. 
Note that six parameters are involved in the 
trilinear backbone curve, capturing yield (i.e. 
point P1), peak (i.e. point P2) and residual (i.e. 
point P3=Pu) strengths. Consequently, three pairs 
of EPP and ESD mechanisms are evaluated, 
where parameters of the i-th pair (i.e. i and i 
represented by Equations 9 and 11, respectively) 
are expressed in terms of the displacements (i.e. 
dyi and du) defining the characteristic points of the 
trilinear backbone curve. It is worth noting that 
the contribution of the ESD mechanisms depends 
on the current value of the selected (constant or 
variable) damage index  Moreover, three 
parameters are needed to describe the evolution 
of damage index  (see Equations 12a,b), two of 
which are already known (i.e. e=dy and u=du), 
while the third (i.e. ) is required to provide 
satisfactory matching between the experimental 
and analytical results. A step-by-step procedure is 
subsequently adopted, allowing continuous 
reproduction of the deteriorating hysteretic 
behaviour. At each step of the analysis, the 
algorithm computes the current value of the 
damage index and modifies loading and 
unloading stiffnesses of the plastic and damage 
mechanisms accordingly.  

 

 
Figure 11. Pushover capacity curve and piecewise linear fit 
for cyclic analysis of the first test structure. 

 
Then, a full-scale experimental test on r.c. 

columns from the literature (Sezen 2002) is used 
to calibrate the CPD model and verify its ability 
to reproduce inelastic cycles, vis-à-vis constant 
axial load and the cyclic loading protocol shown 
in Figure 9c. Experimental force-displacement 
curves (solid red lines) are plotted in Figures 12 
and 13, with regard to a stepwise increasing 
loading history, while numerical results (solid 



 

black lines) are represented in terms of a force-
displacement law of an SDOF system equivalent 
to the structure shown in Figure 9a. In particular, 
results for low (=0.33), medium (=0.5) and 
high (=0.83) constant values of the damage 
index (Figure 12) are compared with the 
hysteretic response obtained on the basis of the 
calculation of a continuous damage evolution 
(Figure 13) with linear (=1.0) and nonlinear 
(=0.5 and =0.2) laws related to the parameter 
governing the rate of degradation.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 12 Comparison between numerical (with constant 
values of the damage index) and experimental results. 

 
The proposed CPD model provides a 

reasonable assessment of the experimental 
(monotonic) curve enveloping the hysteretic 
response when a high (constant) value of damage 
index  (Figure 12c) or damage variability 
depending on the current value of the inelastic 
deformation (Figure 13) are considered. An 
acceptable fit with the experimental cyclic 

response is partially guaranteed only during the 
unloading phases for an updating value of  in 
line with nonlinear degradation rules (Figures 
13b,c). Pinching phenomena cannot be 
adequately controlled in the basic formulation of 
the ESD mechanisms governed by Equations (9) 
and (11). Moreover, it should be noted that the 
unloading and reloading phases occur along the 
same straight line resulting from a damage index 
as function of the maximum inelastic 
displacement, independently of cumulative 
inelastic deformations and dissipated energy. It is 
not possible, therefore, to capture the internal 
cycles of the F-d experimental laws when three 
cycles are applied for each peak displacement, in 
line with the second loading protocol (Figure 9c). 
Nevertheless, such straight lines appropriately 
reproduce the global hysteretic response, 
capturing the key values (i.e. minimum and 
maximum) of the cyclic displacements. 

 

 
(a) 

 
(b) 

 
(c) 
Figure 13 Comparison between numerical (with variable 
values of the damage index) and experimental results. 
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It is worth noting that the selection of a more 
sophisticated damage index based on 
combination of the hysteretic energy and inelastic 
deformation, given the combination of plastic and 
damage mechanisms, would make it possible to 
better reproduce experimental loops of degrading 
systems. From this point of view, the proposed 
CPD model should be considered as work in 
progress, until an appropriate damage index is 
calibrated. 

Numerical studies confirm that it may possible 
to estimate the complex effects of strength and 
stiffness degradation on seismic response of a 
multi-degree-of-freedom (MDOF) system 
through the nonlinear dynamic analysis of an 
equivalent SDOF system (Vamvatsikos and 
Cornell 2005). Specifically, nonlinear static 
analysis is used to generate an idealized force-
deformation curve of the MDOF system, which is 
then used as a force-displacement capacity 
boundary to constrain the hysteretic behaviour. In 
this way, a piecewise linear fit of the pushover 
curve can be used as the initial backbone curve 
when applying the CPD model to the equivalent 
nonlinear SDOF system. To illustrate this 
procedure, the CPD model is applied to the 
nonlinear SDOF system equivalent to the second 
test structure shown in Figure 10. A nonlinear 
static (pushover) analysis of the framed structure 
along the Y direction is carried out, under 
constant gravity loads and monotonically 
increasing horizontal loads. A “modal” lateral-
load pattern is adopted, proportional to the first 
mode (horizontal) components multiplied by the 
corresponding floor masses. A step-by-step 
procedure based on the arc-length iteration 
scheme is adopted in the pushover analysis 
(Mazza 2018), assuming a value rF=1% for the 
hardening ratio of the r.c. frame members. 
Capacity curves of the MDOF system and 
equivalent SDOF system that mimics its 
nonlinear behaviour are shown in Figure 14, 
considering the base shear (Fbase) and the 
horizontal top displacement (dtop).  

 

 
Figure 14. Pushover capacity curve and piecewise linear fit 
for cyclic analysis of the second test structure. 

The total seismic weight of the structure (Wtot) 
and the building height (Htot) are also reported as 
a reference. Note that the ultimate value of 
displacement corresponds to the ultimate value of 
curvature ductility demand at critical sections of 
the r.c. frame members, evaluated in accordance 
with the provisions of the Italian seismic code for 
existing buildings (N.T.C. 2018). The capacity 
curve of the original structure is converted into 
the pushover curve of an equivalent SDOF 
system, computing reduced forces and 
displacements based on the first mode 
participation factor of the MDOF system along 
the Y direction (i.e. Y=1.31). 

Then, an implicit two-parameter integration 
scheme and an initial stress like iterative 
procedure are used for the nonlinear dynamic 
analysis of the second test structure subjected to 
horizontal ground motion (Mazza and Mazza, 
2010). Nonlinear time-history analyses of the 
SDOF system are carried out, considering seven 
ground motions matching, on average, the life-
safety (LS) acceleration design spectrum of the 
original building. Specifically, force-
displacement curves resulting from the CPD 
model are plotted in Figures 15 and 16, with 
reference to constant values of the damage index 
(i.e. =0.33, 0.5 and 0.83 in Figures 15a,b,c, 
respectively) and variable values of  depending 
on peak inelastic deformation (i.e. assuming rate 
degradation of damage governed by =1, 0.5 and 
0.2 in Figures 16a,b,c respectively). As shown, 
the main modes of cyclic deterioration induced 
by each ground motion are highly sensitive to the 
damage process during the loading history, 
stressing the importance of having a 
computationally efficient and numerically 
accurate structural model able to describe the 
softening behaviour of structural components, 
especially under extreme loading conditions. In 
particular, stiffness reduction upon unloading and 
reloading are already apparent for low-to-medium 
(constant) values of  (Figures 15a,b), while 
strength decay related to pinching effects and 
cyclic and in-cycle degradations only appears for 
high values of  (Figure 15c) and continuous 
linear (Figure 16a) and nonlinear (Figures 16b,c) 
damage evolution. It should be noted that similar 
curves are obtained for different ground motions 
when constant values of the damage index are 
considered (Figure 15), since these curves have 
only one capacity boundary curve in common. On 
the other hand, some slight differences are 
observed in the case of a variable damage index 
(Figure 16) given that selected records are scaled 
to match the (elastic) design response spectrum of 
acceleration. 



 

 
(a) 

 
(b) 

 
(c) 

Figure 15. Cyclic response (constant values of the damage 
index) of the nonlinear SDOF equivalent to the second test 
structure, subjected to selected earthquakes matching life-
safety design spectrum. 

 
Finally, the force-displacement curves that 

envelope the hysteretic response of the equivalent 
SDOF system (i.e. the cyclic envelopes) are 
plotted in Figure 17, together with the monotonic 
trilinear curve resulting from nonlinear static 
analysis of the second test structure. In detail, the 
cyclic envelopes correspond to constant (Figure 
17a) and variable (Figure 17b) values of damage 
index  and are formed as an average of those 
separately obtained for each of the seven 
accelerograms.  

 
(a) 

 
(b) 

 
(c) 

Figure 16. Cyclic response (variable values of the damage 
index) of the nonlinear SDOF equivalent to the second test 
structure, subjected to selected earthquakes matching life-
safety design spectrum. 

 
It is interesting to note that the capacity 

boundary curves are strongly influenced by the 
dynamic nature of the loading protocol and the 
stiffness and strength deteriorating rules of the 
CPD model, which are in some cases smaller and 
in others significantly smaller than the capacity 
boundary curve for monotonic loads. This 
confirms once again the importance of accounting 
for the nonlinear cyclic response accurately, also 
because performance-based design procedures are 
frequently based on monotonic (pushover) force-



 

displacement curves that do not include 
information on the hysteretic behaviour of the 
structural system. 

 

 
(a) 

 
(b) 

Figure 17. Capacity boundary curve for the nonlinear 
SDOF equivalent to the second test structure subjected to 
selected earthquakes matching life-safety design spectrum. 

6 CONCLUSIONS 

A hysteretic model based on combined plastic 
and damage mechanisms (CPD model), deriving 
from the assumption that the nonlinear monotonic 
response is known, is first developed and then 
implemented in a C++ computer code for the 
nonlinear static (cyclic) and dynamic (seismic) 
analysis. An in-parallel combination of EPP and 
ESD mechanisms is obtained through a piecewise 
linear fit of the initial backbone curve.  

The effects of different damage levels on the 
CPD model are firstly investigated by considering 
constant values of the damage index. As 
expected, the hysteretic energy dissipation of the 
EPP mechanisms declines for increasing values 
of  while the opposite happens for the ESD 
mechanisms. A good correlation is shown 
between low values of  and ductile behaviour, 
characterized by hysteretic loops with large 
energy dissipation capacity, and high values of  

and brittle behaviour, with moderate to severe 
pinching during the reloading phase. Then, 
effects of different damage evolution laws are 
also analysed with reference to linear (=1) and 
nonlinear (<1) degradation rules of the damage 
index. It is resulted that the hysteretic energy 
dissipation corresponding to  is lower than 
that corresponding to =1, reflecting structural 
members with poor detailing. 

The proposed CPD model is validated against 
full-scale experimental tests on r.c. columns 
subjected to constant axial load and mostly 
monotonic and stepwise increasing horizontal 
loads. In particular, the results for low, medium 
and high constant values of the damage index are 
compared with those obtained on the basis of a 
continuous damage evolution, with linear and 
nonlinear laws of the parameter governing the 
rate of degradation. The CPD model provides a 
reasonable  assessment of the experimental 
(monotonic) curve enveloping the hysteretic 
response when a high (constant) value of  or 
variability with the current value of inelastic 
deformation are considered. An acceptable fit 
with the experimental cyclic response is partially 
guaranteed only during the unloading phases for 
an updating value of  in line with nonlinear 
degradation rules (<1).  

Finally, the nonlinear seismic analysis of a 
SDOF system equivalent to a r.c. framed 
structure confirms that the main modes of cyclic 
deterioration (i.e. stiffness reduction during the 
unloading and reloading phases, strength decay 
related to pinching effects and cyclic and in-cycle 
degradations) and the capacity boundary curves 
are highly sensitive to the dynamic nature of the 
loading protocol and the deteriorating rules of the 
CPD model. This highlights the importance of 
accounting for the nonlinear cyclic response 
appropriately through an efficient and accurate 
numerical model, which also takes into account 
the fact that performance-based design 
procedures are frequently based on pushover 
curves that do not include information on the 
hysteretic behaviour of the structural system. 
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