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ABSTRACT  

The mechanism method is used in this paper for the evaluation of the capacity of stone and masonry arch bridges 

under seismic loadings. The material is supposed to have a rigid-perfect plastic behaviour in compression and no 

tension strength. The arch is subject to the dead loads, due to its self-weight and the weight of the backfill, and to 

an horizontal seismic acceleration acting in the longitudinal direction, from the right to the left. This acceleration 

causes a horizontal inertial load acting on the entire arch due to the mass of the ring. Besides, the horizontal inertial 

actions due to the mass of the backfill, present from the two abutments to the arch profile, are considered only on 

left half of the arch, while the backfill is supposed to tend to separate from the arch at the right half. The main 

aspects of the structural behavior are pointed out and the influence of the various geometrical and loading 

parameters on the collapse acceleration value are investigated.  

 

 

1 INTRODUCTION  

The limit analysis is widely used for the 
assessment of stone arch bridge capacity. 
Numerical solutions based on the mechanism 
method were proposed by several authors and 
applied to study the seismic limit behaviour. The 
study consisted in finding out the collapse 
mechanism under dead - plus - vertical travelling 
loads and horizontal forces simulating the seismic 
actions and the horizontal acceleration needed to 
turn the structure into a mechanism.  

Kooharian (1952) introduced the limit analysis 
of voussoir arches, based on the main hypothesis 
that stone arches fail by forming pin joints, as 
demonstrated by old but also by more recent 
experimental studies. As a result, the collapse 
must be viewed as a geometrical issue rather than 
a problem of strength of material.  

Heyman (1966, 1969) proposed the well-
known model of arch made of a set of rigid 
voussoirs laid dry without any mortar, with the 
assumptions of material with no tensile strength 
but infinite strength in compression and that 
sliding failure cannot occur. Heyman's theory was 
applied to study the limit behaviour and to find 

out the collapse mechanisms of stone arches 
under dead - plus - vertical live loads and to 
investigate, by means of a comprehensive 
numerical investigation, the influence of the 
various geometrical and loading parameters on 
the limit structural behaviour of stone arches 
(Clemente et al., 1995).  

The mechanism model, has been also used to 
analyze the behaviour of a stone arch bridge 
under seismic actions. The dynamic behaviour of 
a circular arch was first analyzed by Oppenheim 
(1992), who established and discussed the failure 
conditions under a horizontal longitudinal 
acceleration. Clemente (1998) analyzed the 
dynamic behaviour of an arch without backfill 
under sinusoidal base acceleration and focused 
the attention on the importance of frequency 
content and amplitude of the input and of the 
initial conditions. Experimental studies on 
shaking table confirmed the hypothesis that stone 
arches fail by forming pin joints (Clemente et al., 
1999).  

De Lorenzis et al. (2007) addressed the impact 
condition for the circular arch, in the hypotheses 
that the hinge locations in the four link 
mechanism do not vary and they reflect when the 



 

motion is inverted. Furthermore, the model does 
not allow initial free hinge formation and 
assumes two hinges at springing points (Dejong 
et al., 2008). Actually, the four-hinge mechanism 
will hinge either only at one or at both springing 
points, depending on the value of the embracing 
angle and the thickness of the arch (Clemente, 
1998), as confirmed also by using the variational 
method (Alexakis & Makris, 2014). The seismic 
behaviour of multispan masonry arch bridges was 
also analysed (De Felice et al., 2006), as well as 
the suitable retrofit techniques (Zampieri et al., 
2015).  

Actually, when the mechanism is put in action, 
the arch may return to its natural configuration, 
after one or more oscillations. In spite of that, 
from a technical point of view the comparison 
between the design peak ground acceleration at 
the site and the minimum acceleration necessary 
to turn the structure into a mechanism can be 
assumed as safety criterion. In this way, the 
safety check of a stone arch under seismic actions 
can be viewed as a static matter.  

On the basis of these considerations, Clemente 
and Raithel (1998) carried out a comprehensive 
numerical investigation on the collapse 
mechanism of stone voussoir arches under 
horizontal longitudinal loadings simulating the 
seismic actions and the related load factor. The 
model of an arch with the Heyman’s hypotheses 
was assumed, subject to its self-weight and 
backfill. Both the parabolic and circular shape 
were considered. Different models were assumed 
to simulate the structure - backfill interaction.  

It is well known that the mechanism method 
presents very interesting advantages, such as the 
simplicity and the speed, but its application could 
be limited due to the limited validity of the 
assumed hypotheses. Among these the hypothesis 
of infinite compression strength.  

As a matter of fact, the compression strength is 
not infinite, even though it could be very high. A 
relevant proposal was based on the definition of 
the thrust zone, which is of sufficient depth to 
carry the load at each cross-section (Harvey, 
1988). Taylor and Mallinder (1993) make use of a 
parabolic stress-strain constitutive relationship 
derived from empirical observation to describe 
the local crushing of masonry at hinge 
development. Brencich and Di Francesco (2004) 
proposed an iterative procedure for the 
elastoplastic analysis of masonry arch structure 
with inelastic strains. Crisfield & Packham 
(1987) developed a numerical procedure to 
evaluate the collapse load for masonry arch 
bridges, using the mechanism method with finite 
compressive strength of the masonry.  

In this paper the model of arch made of no-
tension material and with a rigid-perfect plastic 
behaviour with finite strength in compression is 
considered. This model was already introduced 
and tested, by analysing the limit behaviour under 
vertical dead and travelling loads (Clemente & 
Saitta, 2017). In order to prescind from the 
position of the interface section and the size of 
the voussoirs, a very high number of voussoirs 
was assumed, simulating a continuous model. 
Furthermore, the case of seismic actions was 
considered, assuming that the arch was subjected 
also to a horizontal load proportional to the 
vertical load acting on it at each section (Saitta et 
al., 2016).  

Herein the arch is considered subject to the 
dead loads, due to its self-weight and the weight 
of the backfill, and to an horizontal acceleration 
acting in the longitudinal direction from the right 
to the left. This acceleration causes a horizontal 
inertial load acting on the arch due to its mass. 
The horizontal inertial actions due to the mass of 
the backfill, present from the abutment to the arch 
profile, is considered only on the left half of the 
arch, while the backfill is supposed to tend to 
separate from the arch at its right half (Saitta et 
al., 2016).  

The analysis is limited to the onset of motion 
and the horizontal acceleration necessary to turn 
the structure into a mechanism is evaluated. The 
successive dynamic phase is out of the scope of 
this paper. The influence of the various 
geometrical and loading parameters is analyzed, 
for the case of circular arch. The analysis is 
limited to the a plane arch. The contribution of 
spandrel walls and the structural contribution of 
the back-fill are not considered.  

2 LIMIT ANALYSIS OF MASONRY 

ARCHES 

2.1 The plastic hinge and the collapse 

mechanism 

As already said, no tension resistance and a 
rigid-perfect plastic behaviour in compression, 
with finite strength fu, were assumed for the 
material, (Clemente & Saitta, 2017). In this 
hypothesis, in a yielded section subject to an axial 
force N acting at a distance d from the edge, 
stresses are uniformly distributed along a depth 
2d from the edge (Figure 1). 

The yield domain of a rectangular cross-
section in the plane ˆˆ( , )e N  is: 

 ˆˆ 1 2e N     (1) 



 

where ê e t  and ˆ
uN N N (with u uN b t f   ) 

are the non-dimensional eccentricity and the non-
dimensional axial force, respectively. The couples 

ˆˆ( , )e N  of the limit domain (Figure 2) correspond 
to limit states in which a portion of the cross-
section, of depth 2d from the edge, is uniformly 
compressed with stress equal to fu.  

   

Figure 1. Design stress distribution at the limit state.  
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Figure 2. Limit domain in terms of ˆˆ( , )e N .  

The Heyman’s model can be viewed as a 
limit case, in which uf   and ˆ 0N  , so that 
the two straight lines become parallel to N̂  axis. 
The expression of the limit domain becomes 
ˆ 1 2e   .  

In the hypothesis of rigid-plastic behaviour of 
the material with finite compression strength, the 
relative rotation centre, between two adjacent 
sections, on the point of collapse is coincident 
with the starting point of the stress diagram 
(Figure 3), i.e., at 2d from the edge. Therefore, 
the line of thrust does not pass through the hinge 
location and this implies some limitations to the 
possible mechanisms.  

 

Figure 3. The plastic hinge.  

Failure of an arch occurs when sufficient 
hinges (at least four hinges) form to turn the 
structure into a mechanism (Figure 4).  

 

Figure 4. Collapse mechanism.  

On the contrary to what happens when using 
the Heiman’s model, the internal forces acting at 
the hinges contribute to the stability of the 
structure. Thanks to the hypotheses about the 
constitutive law of the material and the stress 
distribution, all the hinges form contemporary. 
The uniqueness theorem ensures that the solution 
exists and is unique, and so is the load factor. The 
safe theorem states that a structure is safe if an 
equilibrium solution can be found in which the 
couples ˆˆ( , )e N  are always inside the limit domain.  

It is important reminding that the thrust line of 
the safe theorem does not need to be the actual 
thrust line: every thrust line in equilibrium with 
external loads, and satisfying the limit condition, 
if any, can be chosen to check the structure. 
Moreover the actual stress distribution in the 
cross-section is not known. In fact, the 
assumption about the material constitutive 
relationship does not allow that, but the fact that 
the thrust line lies within the masonry, with 
stresses lower than fu, ensures that there are only 
compressive actions, which can be transmitted 
from each section to the next (Clemente et al., 
1995).  

2.2 The collapse horizontal acceleration  

For any span L, assuming the non-dimensional 
coordinates of the arch centreline: 



 

ˆ ˆ ˆ, ( ) ( )x x L y x y x L    (2) 

the geometrical characteristics of the arch are 
individualized by the sag ratio, the thickness ratio 
function and the fill depth ratio above the 
extrados at the crown, respectively: 

ˆ ˆˆ ˆ( ) ( )f f L t x t x L h h L     (3) 

The width b of the deck is usually assumed 
unitary for a plane modelling. If w is the weight 
per unit volume of the structural material that 
constitutes the ring, its compression strength can 
be defined by the non-dimensional parameter 
(Clemente and Saitta, 2017):  

u wf L    (4) 

The total dead load w is given by the 
summation of:  

 the arch self-weight ww, which varies along 

the span even if the thickness is constant,  

 the backfill weight wb, also variable along the 

span, which depends also on the backfill 

weight per unit volume b.  

The horizontal load depends on the model 
assumed for the structure-backfill interaction. In 
the following, the arch is subjected to an 
horizontal acceleration acting in the longitudinal 
direction from the right to the left. This 
acceleration causes a horizontal inertial load 
acting on the entire arch due to the mass of the 
ring.  

The horizontal inertial actions due to the mass 
of the backfill, present from the abutment to the 
arch profile, is considered only on the left half of 
the arch, while the backfill is supposed to tend to 
separate from the arch at the right half. Then, the 
horizontal seismic loading is:  

   ( ) tan 2sinh w b gp x w x x t a g          (5) 

Let us consider the masonry arch in Figure 4 
and suppose that an equilibrium solution under 
the vertical dead loads can be found, in which the 
points representing the stress states on the plane 
( ˆˆ,e N ) are always within the limit domain of each 
cross-section. When the seismic loads are put in 
action and are increased from zero to the collapse 
value, the line of thrust changes and then at least 
four hinges form.  

The collapse mechanism and the 
corresponding horizontal acceleration can be 
found by using the usual iteration procedure in 
which the equilibrium equation is written by 
means of the principle of virtual works (Clemente 
et al., 1995). For any assigned mechanism, the 
virtual works of the vertical loads w and the 
reference horizontal load ph, obtained assuming 
ˆ 1g ga a g   in eq. (5), can be written as follows, 

using the non-dimensional expressions of the 
loads, respectively:  

     
1

3

0
ˆ ˆ ˆ ˆ ˆ ˆw w w bL bL w x w x x dx         

(6) 

     
1

3

0

ˆˆ ˆ ˆ ˆ ˆ ˆh w w bL bL w x w x x dx        

The function  x̂  and  ˆ x̂  are the vertical and 
horizontal components of the virtual 
displacements, respectively. If i  are the 
relative rotations at the n hinges and ˆˆ 2i iN d   are 
the corresponding axial forces, then the internal 
work can be written:  

2 3 2

1 1

ˆ2 2
n n

i u i i w i iL f d bL d          (7) 

It is interesting to observe that when the 
compression strength increases indefinitely, then 
the internal work tends to zero. If ˆga  is the 
horizontal acceleration that turns the structure 
into a mechanism, the equilibrium equation can 
be written:  

ˆw g h iL a L L    (8) 

Eq. (8) gives the kinematically admissible 
horizontal acceleration ˆga  and so the load 
intensity associated with the assumed mechanism, 
from which the external reactions and the line of 
thrust can be found. The acceleration value ˆga  is 
the collapse acceleration only if the associated 
line of thrust satisfies everywhere the relation 

ˆˆ (1 ) / 2e N  , with the equality at a sufficient 
number of sections to turn the arch into a 
mechanism. If it is not, the procedure must be 
continued and in the next step the hinges must be 
moved to the section with the maximum 
exceedances.  

3 LIMIT BEHAVIOUR OF A CIRCULAR 

ARCH UNDER SEISMIC LOADING 

The geometry of a circular arch can be defined 
by means of the angle of embrace   and the 
radius R. They are related to span length L by the 
relationship  2 sin 2 R L  .  

In the following, the value 125   (for which 
it is R = 0.564·L) is considered and the thickness 
is referred to the radius R. Furthermore, an 
average value was assumed for the backfill 
weight per unit volume. It was expressed as a 
ratio of the weight per unit volume of the arch, 

/ 0.5b w    . Finally two values of the material 
parameter   were considered, equal to 10 and 
30, respectively, and two values of the backfill 
depth ĥ , equal to 0 and 0.03, respectively. 

The already described model was considered 
for the backfill – arch interaction, in which only 
the left side of the arch is subject to the inertial 



 

force due to the horizontal strips of the backfill 
acting on it.  

In Figure 5 the collapse horizontal acceleration 
ˆ

ga  is plotted versus t/R, for the two values of   
(10 and 30, respectively) and two values of ĥ  (0 
and 0.03, respectively). The values of the 
acceleration, which turns the arch into a 
mechanism, increases almost linearly with t/R. In 
Figures 6 the couples ˆˆ( , )e N  of  the eccentricity 
and the axial force along the arch are plotted with 
the limit domain, for different values of t/R 
ranging from 0.03 to 0.15, and for two values of 
  (10 in Figure 6a and 30 in Figure 6b, 
respectively).  
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Figure 5. Collapse values of the acceleration ˆ
ga  versus t/R, 

for =125° and γ =0.5.  
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Figure 6. Couples of values of ˆˆ( , )e N  at collapse, for 
different values of  and ĥ , for =125° and γ =0.5.  

The larger   the lower the value of the non-
dimensional axial force, approaching zero when 
the strength of material goes to infinity, in 
accordance to the Heyman’s model.  

Figures 7 show the hinge position versus t/R 
for the two values of   (10 and 30, respectively) 
and ĥ  = 0. It is apparent that, for the lower value 
of the fill height and for very low values of t/R 
(between 0.03 and 0.04) hinge H4 does not form 
at the right springing, ˆ 1x  , but at a lower 
abscissa. Also relevant changes of the position of 
H3 can be observed for low values of t/R, for all 
the considered cases. 

The values 2d/t of the plastic portions of the 
cross-sections at hinges versus t/R are plotted in 
Figures 8, for two values of   (10 and 30, 
respectively) and ĥ  = 0. The influence of the fill 
height is evident. Furthermore, the movement of 
hinge H4, pointed out for very low values of t/R 
and ĥ  = 0, leads to a reduction of the plastic 
depth at that hinge.  

The collapse mechanisms obtained for values 
of t/R in the range 0.03-0.04, with a step of 0.002, 
are shown in Figure 9, for   = 10 and ĥ  = 0. It is 
worth noting that the position of the hinge H4 
approaches   for a lower thickness value in the 
case of rigid material. Finally, in Figure 10 the 
collapse horizontal acceleration ˆ

ga  is plotted 
versus the rise f̂  for two values of   (10 and 30, 



 

respectively) and two values of ĥ  (0 and 0.03, 
respectively).  
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Figure 7. Plastic hinge locations for different values of   
(10 and 30), for ĥ = 0,  = 125° and γ = 0.5.  

The range of variability of f̂  corresponds to 
values of   between 50° and 125°. As already 
observed in previous papers, the resistance of the 
arch increases when the sag ratio decreases. 
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Figure 8. Plastic portions of the cross-sections at hinges for 
two values of   (10 and 30), with ĥ  = 0,  = 125° and γ = 
0.5.   

4 CONCLUSIONS  

In this paper the seismic behaviour of arch 
bridges made of no tension materials with finite 
compression strength has been analyzed. The 
hypothesis of material with rigid-perfect plastic 
behaviour in compression and no tension strength 
allows to interpret the effective behaviour of 
masonry, whose strength in compression is 
limited and could be quite low. In fact, hinges 
cannot form at one free edge of the arch cross-
sections (this is almost true for very high material 
strength only), but a finite portion of the cross 
section will be yielded. The extension of this 
portion is obviously related to the masonry 
strength. In the proposed model the internal work 
assumes a great importance in the equilibrium 
condition, especially for masonry with low 
strength. The vertical loads, which include the 
ring self-weight and the backfill, were assumed to 
be fixed. The variable horizontal seismic loading 
was related to the inertial forces due to the arch 
ring mass plus that of the horizontal strips of 
backfill. A rigid-perfect plastic model was used 
for the material. The structural behaviour was 
investigated by numerical analysis based on a 
non-dimensional formulation.  



 

 

 

 

 

 

 

Figure 9. Sequence of collapse hinges for t/R equal to 
0.030, 0.032, 0.034, 0.036, 0.038 and 0.040, respectively, 
with  =10,  ĥ  =0,  γ =0.5 and  =125°.  
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Figure 10. Collapse acceleration versus f̂  for γ =0.5 and 
for two values of   (10 and 30) and two values of ĥ  (0 
and 0.03).  

In general, the collapse horizontal acceleration 
increases with the thickness but presents a 
significant lowering when the strength of the 
material decreases. The presence of the fill 
influences very much the position of the hinges, 
especially for low values of the thickness. With 
reference to other horizontal loads, major 
differences in hinge positions are observed for 
low values of the thickness (Saitta et al., 2016). 
Further investigations are needed to highlight 
differences for a wider range of the various 
parameters. 
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