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ABSTRACT  

Most damage identification methods used in the field of structural health monitoring are based on comparing the 

modal parameters estimated at different time intervals. Since natural frequencies can be evaluated even by using 

limited instrumentation and does not require any signal synchronization procedure, frequency-based identification 

methods are of great interest for applications in real-time monitoring by means of low-cost sensing systems. In the 

last decades, several damage-sensitive features have been proposed in order to conduct damage identification 

minimizing the occurrence of errors under varying environmental conditions. However, the amplitude of input 

excitation can also lead to short-term frequency variations, due to a non-linear behaviour of civil structures. This 

paper proposes a procedure aimed at damage detection in non-linear structures based on frequencies and amplitudes 

of modal responses, estimated assuming a locally-linear structural behaviour. It is shown that, by analysing a set of 

instantaneous parameters, it is possible limit the problems related to an incorrect identification of the structural state 

of health when the effects of non-linearities on modal parameters prevail over those of an actual state of damage. The 

method proposed is applied to a set of data recorded on a reinforced concrete structure with strongly non-linear 

behaviour. 

 

1 INTRODUCTION 

To date, due to the advantages obtained also in 

economic terms, the growing importance of 

structural health monitoring is leading a large 

number of researchers to study versatile and 

precise methods, applicable not only to structures 

of strategic and monumental importance, but also 

to minor buildings and infrastructures, which 

however require constant control (Cardoso et al., 

2019; Limongelli et al., 2019; Bazzucchi et al., 

2018). 

Because of their direct physical interpretation 

and efficiency achieved through the large number 

of computational algorithms proposed in the last 

decades, modal parameters (i.e., natural 

frequencies, modal shapes and damping) are 

among the most used for damage identification 

(Brinker and Ventura 2015). In particular, a 

variation of quantities calculated using modal 

parameters generally indicates a change in the 

structural dynamic behaviour and is often 

associated with ongoing damage. These quantities 

are therefore called damage-sensitive features 

(DSFs). 

Recently, several monitoring solutions were 

proposed which employ Micro Electro-

Mechanical System (MEMS) sensors combined 

with low-cost microcontrollers and wireless 

transmission modules, with less impact from the 

visual and economic point of view with respect to 

the traditional configurations based on wired 

piezoelectric sensors (Noel et al. 2017). Moreover, 

thanks to the computational capacity of  

microcontrollers, part of processing activities can 

be performed directly on board, in a decentralized 

topology. The issue of energy efficiency is of the 

utmost importance for low-cost solutions, since it 

is strictly related to the wireless transmission rate 

(Tokognon et al. 2017). Moreover, because of the 

lack of a centralized time reference, data 

synchronization is a critical issue when dealing 

with complex monitoring networks (Kim et al. 

2016). 

Since natural frequencies can even be estimated 

by means of a single sensor without requiring 

synchronization of acquired data, frequency-based 



 

identification methods are particularly suitable for 

decentralized monitoring systems. 

Although modal parameters are evaluated using 

linear models, civil structures generally exhibit 

different forms of non-linearity (Worden and 

Tomlinson 2001). This fact is usually neglected in 

traditional identification methods, assuming that 

signals on which modal analysis is performed are 

collected under low-intensity excitation and 

stationary environmental conditions, which 

include temperature, humidity, and the 

characteristics related to the input excitation (e.g., 

amplitude and frequency content). However, 

depending on the construction technology, some 

structures may reveal their non-linear behaviour 

even under ambient vibration, which is always 

present during operating conditions. Moreover, 

environmental effects are not always assumable as 

stationary and may therefore compromise the 

quality of identification results (Gentile et al, 

2019; Zonno et al., 2019; Saisi et al. 2018; 

Giordano et al. 2018; Magalhães et al., 2012; 

Ramos et al., 2010; Peeters et al, 2001). A direct 

comparison of modal parameters obtained during 

different time intervals may therefore be 

misleading for the identification of damage, since 

the differences of estimated parameters could also 

be due to a variation of the exciting input or to 

environmental effects. In the last decades, several 

techniques for removing environmental effects 

from damage-sensitive features were proposed 

(Gentile et al. 2019). In addition, an increasing 

amount of methods to also consider structural non-

linearities were developed (Billings 2013), most of 

which are computationally expensive and require 

a large amount of data, making them unsuitable for 

decentralized low-cost monitoring systems. 

In this paper, we propose a data preparation 

criterion and a DSF which also takes into account 

the non-linearity of structural dynamic behaviour 

in a simple way. The DSF is based on the 

instantaneous frequency and amplitude of a 

selected modal response, extracted by means of an 

algorithm presented in a previous work (Quqa et 

al. 2019). The procedure is particularly suitable for 

applications with non-stationary or non-persistent 

input excitation. In order to show this fact, the 

method proposed is applied on accelerometric data 

collected during an experimental campaign 

conducted on a full-scale 7-story slice of a 

reinforced concrete building, tested with different 

excitation levels and in progressive induced 

damage conditions (Moaveni et al. 2010). 

2 PROCEDURE OUTLINE 

The identification algorithm used for the 
extraction of modal responses (Quqa et al. 2019) 
consists of a first initialization phase which 
involves the construction of a wavelet filter bank 
used to decompose the acquired signal into 
separate modal responses, and a real-time 
processing phase which lies in the estimation of 
instantaneous frequencies and amplitudes using 
the Teager Energy Operator (TEO). The 
estimation of instantaneous parameters is carried 
out assuming a local linear model. This method is 
also valid under the assumption of non-stationary 
signals. 

In the case of low-cost monitoring solutions 
based on embedded systems, the storage space 
dedicated to identified instantaneous parameters 
should be reduced as much as possible, due to the 
limited capacity of low-cost electronic devices. 
However, the excitation characteristics may vary 
over time, resulting in a variation of the identified 
modal parameters, which may lead to an incorrect 
estimation of structural damage. It is therefore 
necessary to use a model consisting of a few 
parameters which describes the structural dynamic 
behaviour under a large set of different conditions, 
even those occurred a long time before the instant 
in which the structural state of health is evaluated. 
For this reason, the first step of the procedure 
proposed in this paper concerns a recursive 
selection of instantaneous identified parameters. 

2.1 Data selection 

First, at time instant 𝑡 = 0, consider two zero-
valued sequences 𝜑0[𝑛] and 𝜓0[𝑛] with 1 < 𝑛 <
𝑁. Up to time instant 𝑡 = 𝑁, replace 𝜑0[𝑡] = 𝑎[𝑡] 
and 𝜓0[𝑡] = 𝑓[𝑡] , where  𝑎[𝑡]  and 𝑓[𝑡]  are the 
instantaneous amplitude and frequency values 
respectively, estimated through the identification 
algorithm. Reorder than both the sequences in 
order of amplitude (e.g., such that 𝜑0[𝑛] <
𝜑0[𝑛 + 1]), obtaining 𝜑𝑡[𝑛] and 𝜓𝑡[𝑛]. At time 
instant 𝑡 = 𝑁 + 1, replace the terms 𝜑𝑡[𝑝] = 𝑎[𝑡] 
and 𝜓𝑡[𝑝] = 𝑓[𝑡] with 𝑝 such that: 

|𝜑𝑡[𝑝] − 𝑎[𝑡]| ≤ |𝜑𝑡[𝑛] − 𝑎[𝑡]| ∀𝑛 ∈ [1, 𝑁] (1) 

In this way, each couple of instantaneous 
parameters (𝑓, 𝑎)[𝑡] replaces the terms with more 
similar amplitude in 𝜑𝑡[𝑛]  and 𝜓𝑡[𝑛] . In 
particular, if the signal analysed has non-stationary 
amplitude, a large part of the data sequences is 
updated. On the other hand, if the signal is 
stationary, a small portion of data is updated, 
without losing the parts referred to different 
amplitude ranges. 



 

2.2 Model identification 

Following the updating procedure of 
frequency-amplitude data, at user-defined time 
intervals 𝜏 = 𝑟Δ𝑡  with 𝑟 ∈ ℕ , the ordered 
sequence 𝜓𝜏[𝑛]  is processed through a median 
filter in order to restrain the fluctuations of 
instantaneous estimates, obtaining the filtered 
sequence �̅�𝜏[𝑛]. The couples (𝜑𝜏, �̅�𝜏)[𝑛] are then 
fitted using non-linear least squares to a model 
described by the equation 

𝑦(𝑥) =
𝑚𝜏

𝜔√2𝜋
𝑒

−
(𝑥−𝜉)2

2𝜔2 ∫
1
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𝑡2
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−∞
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which represents the skew-normal distribution 
(Azzalini 2013), multiplied by a factor 𝑚𝜏/2 , 
where 𝑚𝜏 is the mean value of 𝜑𝜏[𝑛]. 

The identification can therefore be performed 
repeatedly, after updating the frequency-amplitude 
sequences, obtaining the recursive estimation of 
the model described in Equation 2, the parameters 
of which (i.e., 𝜔, 𝜉 , and 𝛼) can be employed to 
compute the instantaneous mean (𝜇), variance (𝜎2) 
and skewness (𝛾) of the skew-normal distribution: 

𝜇 = 𝜉 + 𝜔𝛿√
𝜋

2
 (3) 

𝜎2 = 𝜔2 (1 −
2𝛿2

𝜋
) (4) 

𝛾 =
4−𝜋

2

(𝛿√2/𝜋 )
3

 

(1−2𝛿2/𝜋)3/2 (5) 

𝛿 =
𝛼

√1+𝛼2
 (6) 

The damage-sensitive feature proposed in this 
paper takes into account these parameters and can 
be interpreted as an approximation of the mode of 
the distribution (Azzalini 2013) fitted to the data 
sequences obtained at time instant 𝜏: 

𝑚0[𝜏] = 𝜇 −
𝜎𝛾

2
 (7) 

By comparing 𝑚0[𝜏] with �̅�0, computed as the 
median value of 𝑚0 collected over a time interval 
referred to a baseline condition, a variation in the 
DSF can be associated with a modification of the 
structural dynamic behaviour and may be related 
to ongoing damage. In this work, the damage index 
is expressed as a percentage variation of 𝑚0[𝜏] 
with respect to �̅�0: 

𝑑[𝜏] =
𝑚0[𝜏]−�̅�0

�̅�0
∙ 100 (8) 

It should be noted that, because of the data 
selection criterion, the algorithm is suitable even 
for non-persistently excited systems. Moreover, 
since the instantaneous identification of frequency 
and amplitude can be performed on board each 

sensing node, data transmissions can be limited to 
the cases in which the DSF exceeds a given 
threshold (i.e., when damage is detected). By 
comparing the results obtained from different 
devices, the robustness of this method may be 
increased. 

3 APPLICATION 

The case study analysed in this paper is a full-
scale slice of a 7-story reinforced concrete 
building with cantilever structural walls acting as 
the lateral force resisting system, tested on a 
shaking table at the University of California, San 
Diego, through the George E. Brown Jr. Network 
for Earthquake Engineering Simulation program 
(Moaveni et al. 2010; Moaveni et al. 2011). The 
test structure (Figure 1) is 20 m high and is formed 
by two perpendicular walls in elevation (web and 
flange wall) and a concrete slab at each level. 
Furthermore, the structure has an auxiliary post-
tensioned column which provides torsional 
stability and 4 gravity columns that support the 
slabs (Figure 2). 

The shaking table tests have been designed to 
progressively damage the building through the 
simulation of four historical earthquakes of 
increasing intensity recorded in Southern 
California.  

 
Figure 1. Test structure (Moaveni et al. 2010). 



 

Before and after each test with seismic 
excitation, the building was subjected to white 
noise excitation of 0.03g root mean square (RMS) 
amplitude for 8 minutes and low amplitude 
ambient vibration for 3 minutes. In this report, 
only the acceleration collected in this “inspection” 
intervals of 11 minutes were used, merged together 
in a single set of data with a total duration of 3300 
seconds. In particular, the first 11 minutes refer to 
a reference “undamaged” condition, after which 
the first seismic excitation (EQ1) of low-intensity 
was applied. EQ1 is the longitudinal component 
recorded from the Van Nuys station during the San 
Fernando earthquake of 1971. After the seismic 
excitation, another inspection interval of 11 
minutes was analyzed. Subsequently, two intervals 
of the same length were recorded after two 
medium-intensity earthquakes (EQ2 and EQ3), 
taken as the transverse component recorded during 
the San Fernando earthquake from the Van Nuys 
station in 1971, and the longitudinal component of 
the Northridge earthquake recorded from the 
Woodland Hills Oxnard Boulevard station in 
1994. The last inspection interval was recorded 
after a high-intensity 360° excitation (EQ4) 
recorded from the Sylmar Olive View Med during 
the Northridge earthquake of 1994. 

The structure was instrumented with a dense 
network of sensors with a total of 45 channels: 29 
longitudinal (three on each floor slab, one on the 
web wall at mid-height of each story, and one on 
the pedestal base), 14 transversal (2 on each floor 
slab), and 2 vertical (at the base, on the pedestal). 
The original data are sampled at 240 Hz. In this 
work, 7 acceleration channels have been used (i.e., 
only longitudinal data indicated in Figure 2), 
recorded at each floor level and downsampled at 
100 Hz. 

 
Figure 2. Floor scheme and location of sensors considered in 
this work (Martinelli et al. 2009). 

The first step of the identification procedure 
was applied to a signal window of 60 seconds, 
collected under white noise excitation in the 
undamaged condition. The Fejér-Korovkin 14 
wavelet function and a decomposition order 6 
were selected in this phase. All the channels have 
been considered in the MAC-based clustering 
procedure. A threshold of 0.8 was chosen, and only 
consecutive components were assigned to the 
same cluster. In Figure 3 the filter bank obtained 
during the first step is reported, superimposed with 
the frequency spectra of each channel of the signal 
window used for initialization. The first mode has 
been selected, since its average energy value 
(represented as a black solid circle) is the only one 
above the threshold, computed as the mean of the 
energies of each cluster (black circles). 

In the second step of the identification 
procedure, the entire set of recordings was 
processed through convolution with the selected 
bandpass filter. In this way, the modal response 
associated with the first vibration mode is 
extracted. Then, the instantaneous frequency and 
amplitude are evaluated by means of TEO. In this 
study, the analyses are performed offline. 
However, the algorithm allows the estimation of 
these quantities on board each sensor in real time, 
as new acceleration data is available, since only a 
short window of data is necessary for filtering and 
computing instantaneous parameters. 

In Figure 4, a weighted average of the 
instantaneous frequencies computed at each node 
is represented, evaluated with respect to the 
instantaneous amplitudes. The overall amplitude, 
intended as the sum of instantaneous amplitudes 
evaluated considering the filtered signal of all 
nodes, is represented as a color scale in the same 
figure (the normalized values with respect to the 
maximum amplitude is reported). 

 
Figure 3. Filter bank for the extraction of modal response. 



 

 
Figure 4. Average instantaneous frequency and amplitude 
(frequencies in ordinates and amplitudes as colour). 

The dashed vertical lines in Figure 4 represent 

the limits between five different conditions: the 

interval from 0 to 660 seconds describes the 

structural behaviour in undamaged condition, 

while during the following intervals, data coming 

from progressively induced damage scenarios are 

used to compute the instantaneous frequency. 

Moreover, in the first part of each interval the 

acceleration recordings collected under 0.03g 

RMS white noise excitation are used, while, in the 

remaining part, the instantaneous frequency is 

evaluated under low-amplitude ambient vibration. 

This fact is also reflected in the plot colour, which 

is darker for larger response amplitude values (i.e., 

in the initial part of each damage scenario). 

From Figure 4 it is possible to notice how the 

instantaneous frequency is particularly noisy and 

would need post-processing procedures (e.g. 

filtering) to be used as a damage-sensitive feature.  

 
Figure 5. Original sets of identified parameters. 

 
Figure 6. Reorganized sets of identified parameters. 

Furthermore, even after filtering, it is strongly 

dependent on amplitude variations, presenting 

abrupt alterations when moving from high to 

modest amplitude values. The dependence of 

natural frequencies on signal amplitude is a clear 

indication of non-linear structural behavior 

(Martinelli et al. 2009). In particular, changes due 

to amplitude variations are also higher than those 

due to the entry into a different damage scenario. 

This fact makes instantaneous frequency unusable 

as the only parameter for damage identification 

purposes. 

In order to apply the procedure proposed in 

Section 2, a computational algorithm was written 

simulating online processing, and therefore using 

a small subset of data at a time (consisting of 2000 

couples of frequency-amplitude parameters), 

which is updated as reported in Section 2.1, at 10 

seconds intervals (replacing therefore 1000 

couples of values at a time with new incoming 

identified parameters). 

In Figures 5-8, the frequency-amplitude data 

referred to the first modal response evaluated at the 

7th floor of the test structure is reported over time 

(represented as a color bar next to each figure). In 

these diagrams, the couples of parameters are 

represented as dots in the frequency-amplitude 

plane and the values referred to the same 𝜏 -th 

updating step are plotted with the same color. 

 
Figure 7. Filtered sets of identified parameters. 

 
Figure 8. Models identified from filtered data. 



 

The total time duration of 3300s is normalized 

to the interval 0-1 in the color bar of these figures. 

In Figure 5, the data is represented as it is 

extracted, i.e., without any selection criterion. It is 

possible to observe that some time intervals 

corresponding to the ambient vibration data sets 

are only characterized by low-amplitude values. In 

these parts, the model fitting would be based on a 

restricted range of amplitudes and would thus not 

be representative of the actual structural behavior. 

In Figure 6, the selection criterion proposed in this 

paper is applied and, indeed, each data set 

(𝜑𝜏, 𝜓𝜏)[𝑛] is composed of samples characterized 

by a wide set of amplitudes. In Figure 7, 

amplitude-based data sorting is performed and a 

median filter of 51 samples is applied, obtaining a 

(𝜑𝜏, �̅�𝜏)[𝑛] data set at instant 𝜏. This step is done 

in order to de-noise the frequency-amplitude 

distribution and to prepare it for model fitting. In 

Figure 8, the model described in Equation 2 is 

reported, fitted to the data windows illustrated in 

Figure 7. It is possible to observe that the 

maximum value of these distributions is a damage-

sensitive feature, since it shifts in the frequency 

axis as the damage scenario changes. 

In Figure 9, the mean, variance and skewness of 

the models identified at the 7th floor of the test 

structure are reported, together with the DSF 

proposed in Equation 7. It is observable that the 

mean is sensitive to damage and insensitive to 

amplitude variations. Variance and skewness 

indicate the spread and asymmetry of the 

distribution, and are therefore linked to the non-

linearity (Sun et al. 2014). As concerns variance, 

the identified value grows following the structural 

progressive damage, not depending on the 

amplitude level, while skewness shows a sharp 

increase in the last scenario, when the damage 

level is maximum. In each damage scenario, the 

DSF is quite a constant, except for a transition 

interval at the beginning of each scenario, which is 

related to the updating of data sequences. 

In Figure 10 the variation of DSF evaluated at 

each level of the specimen is reported, while in 

Figure 11 the cumulative amount of detected 

“positives” is plotted over time. 

 
Figure 9. Parameters identified from model fitting. 

 

 

 

 

 

 

 
Figure 10. Variation of DSF evaluated at each level, from the 
top (level 7) to the bottom (level 1). 

 
Figure 11. Cumulative number of positives detected. 



 

In particular, the variation reported in Figure 10 

is computed as the percentage variation of the DSF 

with respect to the median value computed over a 

baseline of the first 30 samples of DSF (each 

obtained through model fitting performed at time 

steps of 10 seconds). The threshold fixed for 

damage detection is chosen as three times the 

variance computed over the same baseline set, 

excluding the outliers (intended as the values 

exceeding three times the median absolute 

deviation). 

Some spurious results in the damage detection 

are observable both for the undamaged and the 

damaged conditions, which become more 

numerous at the lower levels of the specimen. 

A study about the accuracy of damage detection 

was also conducted and, in Figure 12, the 

percentage amount of true/false negative/positives 

is reported for each damage scenario and each 

level of the test structure. In particular, by 

analysing the data collected at the top floors, 

damage detection is more accurate, as for levels 6 

and 7 (indicated in the figure as LV6 and LV7 

respectively) the 100% of tests performed in the 

undamaged scenario have resulted as “negative” 

and the 100% of the tests performed in all the 

damage scenarios have resulted as “positive”. On 

the other hand, from level 2 to 5, the positives are 

correctly detected at 100%, while some “false 

positive” values are identified in the undamaged 

scenario. At level 1, a considerable percentage of 

“false negatives” was detected, making the 

estimation unreliable. This fact is due to the low 

amplitude level of the structural response collected 

at the lower floors, which is mostly affected by 

noise. However, analysing the results from all 

levels, as performed in Figure 11, a correct damage 

detection can be achieved for all scenarios, setting 

50% of “positives” as a threshold. 

Following a centralized initial procedure for the 

construction of the analysis filter, the possibility of 

evaluating the DSF individually at each level 

allows a considerable advantage for the energy 

efficiency aspect, as the level of wireless data 

transmission can be minimized and may only 

consist of a "positive" signal transmitted when the 

DSF exceeds the selected threshold. When a large 

number of positives are collected from a central 

monitoring base, the probability that the structure 

is actually damaged increases, making necessary 

more accurate analyses aimed at damage 

localization and at determining the causes of the 

variation registered in dynamic behaviour. 

 
Figure 12. Results of damage detection for each scenario. 

4 CONCLUSIONS 

In this paper, an algorithm is presented aimed at 
the selection of instantaneous parameters in order 
to compute a DSF which is independent of the 
variations in excitation amplitude. 

The proposed method was tested on a set of data 
composed of signals recorded on a structure with 
non-linear behaviour in different damage 
scenarios and environmental conditions, in order 
to evaluate the effectiveness of the DSF in tracking 
the ongoing damage in real time without showing 
detection errors when the excitation amplitude 
changes. 

The identification results proved to be 
particularly accurate and, for most cases, are not 
related to variations in the excitation amplitude. 
Moreover, the accuracy is higher for sensors 
placed at the upper levels of the specimen, 
showing some spurious terms at the lower levels. 

However, in order to increase the level of 
robustness of the identification procedure, all the 
nodes were considered, showing how the 
cumulative number of positives identified in real 
time is a reliable damage index that involves an 
extremely reduced wireless transmission rate.  

In this way, the energy efficiency of the entire 
monitoring system is optimized and the proposed 
solution can be implemented by means of low-cost 
technologies, making this method suitable for 
early detection of damage even for minor 
structures. 
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