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ABSTRACT  

Recent approaches for vibration-based damage detection in building structures are based on the calculation of modal 

flexibility (MF) based deflections. These deflections are estimated by applying uniform loads (UL) to experimentally 

derived modal flexibility matrices of the structures, and the interstory drifts are considered as damage-sensitive 

features (DSFs). However, in practical applications only a limited number of modes is usually identified from 

vibration data, and thus modal truncation effects are introduced on the deflections. To address this problem a mass 

proportional load (MPL) has been proposed, in a previous study by the authors, as an alternative to the uniform load 

with the aim of reducing the truncation effects on the displacement components of MF-based deflections of structures 

with mass irregularities. The objective of this work is to investigate further the mentioned problem by evaluating the 

truncation errors that affect the MF-based interstory drifts of frame buildings (i.e. the DSFs that can be conveniently 

used for damage detection). For structures with mass irregularities the truncation errors related to the application of 

the proposed MPL are thus compared with those related to the UL. Parametric studies were carried out on numerical 

models of shear-type frame buildings by considering structures with a different number of stories and various 

distributions of the story mass ratios, and by considering different subsets of modes included in the calculations.

1 INTRODUCTION 

Assessing the condition and the health of civil 
structures over time and especially after potential 
damaging events, such as earthquakes, is still a 
complex and challenging task. To this end, 
promising strategies and techniques are the ones 
that belong to the field of vibration-based 
Structural Health Monitoring (SHM). Civil 
structures, such as building or bridge structures, 
can be conveniently instrumented with vibration 
sensors, and tested during their normal operating 
conditions under ambient excitations. Data 
acquired over time or, in general, at different time 
instants can then be analyzed, and one of the main 
goals that can be attained is to detect the eventual 
presence of damage in the structure (Sohn et al. 
2003), (Farrar and Worden 2013).  

In vibration-based damage detection and 
localization of structures, simple but effective 
techniques are the so-called modal flexibility-
based techniques. According to these techniques 
the modal parameters of the structures are 
identified from the vibration data and then used to 

assemble an experimentally-derived model. Such 
model consists, specifically, in the modal 
flexibility matrix of the structure. In the 
framework of such techniques, as shown in the 
works of (Zhang and Aktan 1998), (Koo et al. 
2010), the more advanced and refined approaches 
are based on an additional important main step – 
i.e. structural deflections are estimated from the 
modal flexibility-based models by applying 
specific loads which are denoted as inspection 
loads. Such loads in the majority of the approaches 
are uniform loads (UL) which are applied at all the 
DOFs of the identified structural model. Different 
variants of the deflection-based methods have 
been developed, depending on whether such 
methods are, for example, applied to bridges (Koo 
et al. 2008) or buildings (Koo et al. 2010), (Koo et 
al. 2011), (Bernagozzi et al. 2017b), (Bernagozzi 
et al. 2018). Referring to the specific case of 
building structures, the interstory drifts computed 
from the modal flexibility-based deflections due to 
positive shear inspection loads (PSIL) are assumed 
as the damage sensitive features (DSFs).  



 

An important circumstance has to be 
considered when dealing with methods based on 
modal flexibility and related deflections – i.e. not 
all the structural modes can be identified in modal 
testing and identification of civil structures. This is 
especially true for civil structures tested under 
ambient vibrations. The input in such case has in 
general a wide frequency content, however, since 
the test is executed using exclusively the natural 
excitations, some structural modes may not be 
excited, and thus they may not be identified 
(Brincker and Ventura 2015). This implies that the 
modal flexibility is usually assembled using a 
limited number of modes, and thus is inevitably 
affected by intrinsic errors - i.e. discrepancies with 
respect to the theorical flexibility assembled using 
all the modes. These errors are known as flexibility 
truncation errors (Zhang and Aktan 1998), and 
they in turn also affect the modal flexibility-based 
deflections.  

According to (Zhang and Aktan 1998), the 
objective of a modal truncation error analysis is to 
determine how many modes need to be included in 
order to obtain adequate estimates of the modal 
flexibility matrices and the modal flexibility-based 
deflections derived from an experimental test. 
These analyses can be performed, for example, 
using numerical models, and they provide useful 
information which can be adopted to design and 
execute the testing phase. By performing 
numerical analyses on a 10 DOF discrete system 
of masses and springs and on a three-span bridge 
model, (Zhang and Aktan 1998) showed that the 
modal flexibility is more sensitive to the number 
of included modes than the uniform load 
deflection. This last is, on the contrary, more 
accurately estimated, as long as the first main 
modes are included. In (Zhang and Aktan 1998) 
the truncation error study has been performed by 
comparing truncated and nontruncated solutions. 
In addition, another criterion for truncation error 
analysis is mentioned, but not applied, in the work 
by (Zhang and Aktan 1998) – i.e. evaluating the 
mass participation factors for the considered 
structural modes. In (Bernagozzi et al. 2017a) an 
approach has been proposed to predict the modal 
truncation effects on the displacement components 
of modal flexibility-based deflections due to 
generic loads. The approach proposed in the 
mentioned work is based on the evaluation for the 
considered modes of a proposed index termed 
Load Participation Factor (LPF), and it can be 
considered as a generalization of the approach by 
(Zhang and Aktan 1998), based on mass 
participation factor, to the case of generic loads 
and to the case of structures with generic 
distributions of the masses. The proposed 

approach was validated through numerical 
simulations on a frame building and using the 
experimental data of a steel frame structure tested 
under ambient vibrations. In (Bernagozzi et al. 
2017a) it was also shown that the truncation errors 
on the displacement components of uniform load 
deflections are in general non negligible especially 
for structures with mass irregularities. To reduce 
such truncation errors, in the mentioned work a 
special inspection load, termed Mass Proportional 
Load (MPL), has been proposed as an alternative 
to the commonly used uniform load. Through 
numerical analyses on models of frame buildings 
and simply supported beams with mass 
irregularities, it was shown that in general the 
truncation errors on the displacement components 
of the MPL deflections are lower than the 
corresponding errors on the UL deflections.  

Referring specifically to the problem of 
reducing (not predicting) the modal truncation 
effects, in (Bernagozzi et al. 2017a) all the 
performed analyses have been focused on reducing 
the errors on the displacement components of the 
modal flexibility-based deflections. For building 
structures, however, the interstory drifts calculated 
from the deflections are also important parameters. 
As already mentioned, in fact, such parameters are 
considered as damage sensitive features, for 
example, in the output-only vibration-based 
damage detection method proposed by (Koo et al. 
2010), which, for the sake of convenience, is 
simply denoted in the present paper as PSIL 
method. Thus, by considering that the evaluation 
of the modal flexibility-based interstory drifts 
from an experimental vibration test on a real 
building structure is in general performed using a 
limited number of structural modes, it is evident 
that reducing the modal truncation effects on such 
parameters is a desirable result. 

The first objective of this paper is to evaluate 
the truncation effects that affect the interstory 
drifts computed from modal flexibility-based 
deflections due to a uniform load of building 
structures with irregular in elevation mass 
distributions. Then, the paper also aims to evaluate 
if such truncation errors can be reduced by 
applying loads different from the uniform load, 
such as, for example, a mass proportional load – 
i.e. the same load that was adopted in the previous 
work by the authors presented in (Bernagozzi et al. 
2017a), where, on the contrary, all the analyses 
have been focused on reducing the errors on the 
displacement components of the deflections. The 
present paper can thus be considered as a 
continuation of the mentioned previous work by 
the authors. In the present paper, numerical 
analyses and parametric studies related to the 



 

study of the flexibility truncation errors were 
performed on various models of shear-type 
buildings with different distributions of the 
structural masses and a different number of stories.  

2 ESTIMATION FROM VIBRATION DATA 

OF MODAL FLEXIBILITY MATRICES, 

STRUCTURAL DEFLECTIONS AND 

INTERSTORY DRIFTS RELATED TO 

FRAME BUILDINGS 

The type of structures that are considered in the 
paper are regular and plan-symmetric frame 
buildings which can be modelled as planar shear-
type structures. Such structures are the same 
structures for which the PSIL method for damage 
detection was developed (Koo et al. 2010). Let us 
assume that the building structure is subjected to 
an ambient vibration (AV) test, and that the 
objective is to estimate the modal flexibility matrix 
of the structure – i.e. an experimentally-derived 
mechanical model of the structure that can be used, 
for example, for damage detection purposes. When 
conducting this operation, to have an accurate and 
reliable estimate of the modal flexibility it is 
important to acquire a sufficient number of 
vibration measurements in different spatial 
locations. For example, as done in (Koo et al. 
2010), it is assumed that the acceleration vibration 
measurements are available at all the stories of the 
building. This result can be obtained if the number 
of sensors to be used in the AV test is equal to the 
number of the stories. Alternatively, if the number 
of sensors is lower than the number of the stories, 
the vibration data can be acquired in multiple data 
sets by adopting both reference and roving sensors 
(i.e. fixed and moving sensors) in different 
experimental test setups (Brincker and Ventura 
2015). 

Starting from the recorded vibration data the 
modal parameters can be extracted using any 
output-only modal identification or operational 
modal analysis technique (Brincker and Ventura 
2015). Then, the modal flexibility matrix Fr n×n of 
the structure can be assembled as follows  

Fr= Φr Λr
-1

 Φr
T
        (1) 

where r is the number of the identified modes with 
r ≤ n, n is the number of the DOFs (equal to the 
number of the stories for a planar shear-type 
building), Φr n×r  is a modal matrix formed by r 
columns and each column contains a mass-
orthogonal and mass-normalized real mode shape 
vector,  Λr r×r is a diagonal spectral matrix which 
contains the square of the first r natural circular 
frequencies ωi

2 on the main diagonal, and i=1…r 

is the mode index. If r < n, the modal flexibility 
matrix of Equation 1 is affected by modal 
truncation errors; if r = n no truncation errors are 
present. Of course, in any case, uncertainties on the 
components of the modal flexibility matrix are 
always present since such quantities are estimated 
from real vibration data inevitably affected by 
noise. To estimate the modal flexibility, as shown 
in Equation 1, mass normalized mode shapes are 
required. These scaled mode shapes can be 
obtained using a modal scaling approach, such as 
for example the mass change method (Bernal 
2004), (Aenlle et al. 2010), or by simply 
considering in the calculations an a-priori estimate 
of the system mass matrix, as done in (Koo et al. 
2010).  

Starting from the modal flexibility matrix, the 
modal flexibility-based deflection xr n×1 due to a 
generic load pn×1 can be determined as follows 

xr=Fr p        (2) 

According to the damage detection method 
applicable to shear-type buildings presented by 
(Koo et al. 2010), the considered inspection loads 
should be Positive Shear Inspection Loads (PSIL), 
i.e. loads that generate positive shear forces in all 
the stories of the building. However, among the 
loads that have this characteristic, in (Koo et al. 
2010) it is suggested to consider a uniform load 
(UL) with components that are equal to one – i.e. 
an n×1 vector equal to [1   1  …   1]T, which is the 
same load that was considered also in the work by 
(Zhang and Aktan 1998). In the method presented 
by (Koo et al. 2010), this load is applied to modal 
flexibility matrices related to both the undamaged 
and the potentially damaged states. 

 For a shear-type building the interstory drifts 
can be computed from the MF-based deflection as 
follows 

dr,j= {
xr,j - xr,j-1      for j=2…n

    xr,j             for   j=1
                    (3) 

where dr,j is the drift at the j-th story and xr,j is the 
displacement component related to the j-th DOF of 
the structure, both of them estimated by 
considering in the calculations a number of modes 
equal to r. The parameters obtained from Equation 
3 – i.e. modal flexibility-based interstory drifts –  
are considered as damage-sensitive features and 
used for damage detection, localization and also 
quantification according, for example, to the 
criteria of the methods proposed in (Koo et al. 
2010), (Koo et al. 2011). 



 

3 TRUNCATION ERROR ANALYSIS 

ON MF-BASED DEFLECTIONS 

AND INTERSTORY DRIFTS OF 

FRAME BUILDINGS  

3.1 Comparison between the truncated and 

non-truncated solutions 

The analysis of the flexibility truncation errors 
can be performed, according to (Zhang and Aktan 
1998), using a preliminary numerical model of the 
structure. Among the different approaches that are 
mentioned in the work by (Zhang and Aktan 
1998), the more simple and intuitive one is to 
directly compare the truncated and non-truncated 
solutions, and such solutions can be, for example, 
components of the modal flexibility matrix or 
displacement components of the MF-based 
deflections. The truncated solutions are obtained 
by considering a limited number of structural 
modes, while the non-truncated solutions contain 
all the structural modes and are equivalent to the 
solutions that can be obtained using the exact static 
flexibility matrix of the structure.  

The relative modal truncation error on the j-th 
displacement component of the modal flexibility-
based deflection can be evaluated as follows 

x,r
  j

=
xr,j - xn,j

xn,j
             (4) 

where xr,j is the truncated displacement computed 
from the modal flexibility matrix Fr assembled 
using r modes and xn,j is the exact displacement 
computed from the static flexibility matrix Fn 
(which is equivalent to the modal flexibility matrix 
assembled using all modes). The criterion was 
presented in the work by (Zhang and Aktan 1998) 
for the case of uniform load deflections, but, as 
shown in (Bernagozzi et al. 2017a), the criterion 
can also be applied to deflections due to generic 
loads.  

For the purposes of the present paper, the 
criterion expressed in Equation 4 is applied to the 
modal flexibility-based interstory drifts of 
building structures. Thus, the relative modal 
truncation error on the interstory drift related to the 
j-th story and due to a generic load can be 
evaluated as  

d,r

  j
=

dr,j - dn,j

dn,j
           (5) 

where, similarly to Equation 4, the terms dr,j and 
dn,j represent the truncated and non-truncated 
solutions, respectively.  

Then, it can be also of interest and convenient 
to quantify the amount of the truncation effects 
that affect all the interstory drifts of the building 

using a unique single parameter. In the analyses of 
the present paper, the root-mean-square (RMS) 
criterion was applied as follows  

d,r
 RMS= √

1

n
 ∑ 

d,r

  j 2
n
j=1         (6) 

where εj
d,r is the relative truncation error on the 

interstory drift related to the j-th story evaluated 
using Equation 5. The criterion presented in 
Equation 6 was adapted from the one presented in 
(Bernagozzi et al. 2017a), where, on the contrary, 
the root-mean-square error was calculated for the 
whole modal flexibility-based deflection starting 
from the truncation errors on the displacement 
components of all the DOFs.   

3.2 Truncation error analysis using the mass 

and load participation factors 

Alternative approaches for truncation error 
analysis do not imply a comparison between the 
truncated and non-truncated solutions. On the 
contrary, such approaches are based on the 
evaluation of specific participation factors for the 
modes that are included in the modal flexibility 
matrices and related deflections. Thus, for these 
approaches for truncation error analysis having the 
knowledge of all the modes of the structure is, in 
principle, not required. 

According to (Zhang and Aktan 1998), the 
analysis of the truncation effects introduced on 
modal flexibility matrices and uniform load 
deflections (assembled using a limited number of 
modes equal to r with r < n) can be performed by 
evaluating, for the considered r modes, the 
cumulative mass participation factor (MPF) of the 
structure  

μ
r
= ∑ μ

(i)
r
i=1                     (7) 

where μ(i) is the mass participation factor related to 
the i-th mode of the structure. This last quantity 
can be evaluated as follows  

μ
(i)

=
Γi

2

Γ
T

 Γ
                   (8) 

if a structure with a diagonal mass matrix (i.e. the 
case for a planar shear-type building) and mass-
normalized mode shapes are considered. In 
Equation 8 the term Γi is the modal participation 
factor related to the i-th mode of the structure, 
which can be determined as Γi= ∑ mjϕj,i

n
j=1 . In 

addition, under the two above-mentioned 
assumptions, it is worth noting that the 
denominator of Equation 8 is ΓT

 Γ=mtot= ∑ mj
n
j=1 , 

where mtot is the total mass of the structure and mj 
is the mass related to the j-th DOF. According to 
(Zhang and Aktan 1998), the cumulative mass 



 

participation factor can be then compared against 
a selected threshold (for example, a threshold 
value equal to 90%), to decide if the number of 
considered modes is sufficient to obtain good 
estimates of the modal flexibility.  

In (Bernagozzi et al. 2017a) an approach has 
been proposed to predict the amount of truncation 
effects expected on modal flexibility-based 
deflections due to generic loads and estimated 
using a limited number of modes. This approach is 
based on the definition of a parameter, termed load 
participation factor (LPF), that quantifies the 
relative contribution of each mode to the modal 
flexibility-based deflection. In particular, this load 
participation factor can be evaluated for each i-th 
mode as follows  

χ
p,(i)

=
cp,i Γi

cp
T Γ

                   (9) 

where, as already mentioned, the term Γi is the 
modal participation factor of i-th mode. The term 
cp,i is defined as cp,i= ∑ p

k
 ϕ

k,i

n
k=1  and it can be 

considered as the work done by the external load p 
for the modal displacements of the i-th mode shape 
ϕ

i
. In addition, referring to Equation 9, it can be 

demonstrated, as shown in (Bernagozzi et al. 
2017a), that the denominator of the expression of 
the load participation factor is cp

T Γ=p
TOT

= ∑ p
j

n
j=1 , 

where pTOT is the summation of all the components 
of the load p applied to evaluate the MF-based 
deflection. Then, starting from the LPFs of the 
single modes, the cumulative load participation 
factor can be evaluated for the considered modes  

χ
p,r

= ∑ χ
p,(i)

r
i=1                    (10) 

and, finally, an estimate of the amount of the 
truncation effects present on the overall deflection 
assembled using the first r modes can be obtained 
by evaluating the term |χp,r - 1|. As shown in 
(Bernagozzi et al. 2017a), the approach based on 
load participation factor can be considered as an 
extension and generalization of the approach by 
(Zhang and Aktan 1998), based on mass 
participation factor. The approach by (Zhang and 
Aktan 1998) applied for truncation error analysis 
on deflections is in fact absolutely suitable for the 
case of uniform loads and structures with a 
uniform mass distribution.  On the contrary, as 
shown in (Bernagozzi et al. 2017a), the approach 
based on load participation factor can be applied in 
the more general cases of deflections evaluated for 
generic loads and structures with generic mass 
distributions.  

The approaches based on participation factors 
(i.e. mass or load participation factors) have been 
presented in this section of this paper to provide an 
overview of the existing literature approaches. 

However, such approaches were not applied in the 
numerical analyses of this paper, since, as already 
mentioned, the paper aims at reducing the 
flexibility truncation effects. The paper is not 
focused on obtaining a prediction of the flexibility 
truncation effects, which is, basically, the main 
achievement that can be obtained using the above-
mentioned participation factors.  

4 REDUCTION OF THE 

TRUNCATION EFFECTS ON MF-

BASED DEFLECTIONS AND 

INTERSTORY DRIFTS OF FRAME 

BUILDINGS WITH MASS 

IRREGULARITIES  

4.1 Mass Proportional Load (MPL): an 

alternative to the commonly adopted 

Uniform Load (UL) 

Analyses presented in the previous work by the 
authors (Bernagozzi et al. 2017a) showed that the 
truncation effects on the displacement components 
of uniform load deflections tend to increase if 
structures with increasing amounts of mass 
irregularities are considered. However, it was also 
shown that, by adopting alternative strategies to 
estimate the deflections, the above-mentioned 
truncation effects can be reduced. An effective 
strategy, adopted in (Bernagozzi et al. 2017a), is to 
estimate the modal flexibility-based deflections by 
applying a load that is proportional to the mass 
distribution of the structure, defined as Mass 
Proportional Load (MPL). This strategy was also 
considered in the present paper to study the 
flexibility truncation errors that affect the MF-
based interstory drifts of building structures with 
irregular in elevation mass distributions.  

For structures characterized by a diagonal mass 
matrix, such as, for example, the structures 
considered in this paper – i.e. planar shear-type 
buildings, the mass proportional load, indicated as 
pm, can be expressed as follows 

pm=M a                       (11) 

where Mn×n is the mass matrix of the structure and 
an×1 is a unitary acceleration vector with constant 
terms a assumed equal to one. Thus, the j-th 
component of the MPL vector is p

j
m=a mj . The 

mass proportional load is a load that has a special 
property. In fact, if a mass proportional load is 
considered for evaluating the deflections, then the 
approach for truncation error analysis based on the 
load participation factor proposed in (Bernagozzi 
et al. 2017a) is equivalent to the approach based on 



 

the mass participation factor that was presented in 
the work by (Zhang and Aktan 1998). This 
property is immediately evident if one evaluates 
the load participation factor χp,(i) related to the i-th 
mode (i.e. Equation 9) by considering a mass 
proportional load. In such case the expression that 
is obtained is equal to the mass participation factor 
μ(i) (i.e. Equation 8).  

The mass proportional load can be considered 
as an alternative to the uniform load, which is 
commonly adopted in the procedures for damage 
detection that use modal flexibility-based 
deflections. However, if one evaluates the 
deflections due to such two loads, the 
displacements and interstory drifts that are 
obtained in the two cases are in general not of the 
same order of magnitude. This is expected since 
the mass proportional load is a vector composed 
by the masses of the structure, while the uniform 
load, as considered either in the work by (Zhang 
and Aktan 1998) or in the work by (Koo et al. 
2010), is a vector whose components are equal to 
one. To make these two loads more comparable, a 
scaled version of the uniform load can be 
considered, as done in (Bernagozzi et al. 2017a). 
This modified version of the uniform load is 
defined as follows 

pu=m* a                            (12) 

where m*=
1

n
∑ mj

n
j=1  is the average mass of the 

MDOF structure – i.e. the average story mass for 

the structures considered in this paper. The j-th 

component of the scaled version of the UL vector 

is thus p
j
u=a m*. 

4.2 Analytical expressions for the 

determination of the truncation errors on 

the MF-based interstory drifts of shear-type 

frame buildings 

An analytical expression was derived in the 
previous work by the authors (Bernagozzi et al. 
2017a) for a direct determination of the truncation 
errors that affect the MF-based interstory drifts of 
shear-type frame buildings due to a generic load. 
The truncation error related to the interstory drift 
at the j-th story can be determined as follows 

d,r

  j
=αd,r

 j
-1= 

∑ cp,i gi

j,UPr
i=1

Vj
-1        (13) 

where αj
d,r is the relative contribution of the first r 

modes to the drift, the term g
i

j,UP
= ∑ mk ϕ

k,i
n
k=j  is 

the portion of the participation factor Γi extended 
only to the degrees-of-freedom (i.e. floor levels) 
that are above the selected j-th story, and Vj is the 
story shear at the j-th story of the structure – i.e. 

Vj= ∑ p
k
 n

k=j . Without going into the details, 
discussed in (Bernagozzi et al. 2017a), it is worth 
noting that it was possible to derive this explicit 
formula (i.e. Equation 13) mainly by taking 
advantage of the special topology and the 
properties related to the flexibility matrix of a 
shear-type building structure. If one performs the 
calculations on a numerical model of a shear-type 
building, Equation 13 provides theoretically the 
same results of Equation 5. However, while in 
Equation 5 truncated and non-truncated solutions 
computed from the modal flexibility matrix are 
considered, in Equation 13 the truncation errors 
are directly determined starting from the 
knowledge of the structural masses, the applied 
load and the components of the mode shapes 
related to the first r modes.  

Equation 13 is used herein to derive the 
analytical expressions for the determination of the 
truncation errors on the MF-based interstory drifts 
evaluated for the two specific loads considered in 
Section 4.1 – i.e. the mass proportional load 
(Equation 11) and the uniform load scaled using 
the average mass, according to Equation 12.  

Let us consider at first the mass proportional 
load. The term cp,i evaluated for the mass 
proportional load is  

cp,i
MPL= a ∑ mk ϕ

k,i
=a Γi 

n
k=1      (14) 

The story shear at the j-th story of the structure Vj 
evaluated for the mass proportional load can be 
expressed as  

Vj
MPL=a ∑ mk

n
k=j      (15) 

Then, Equations 14 and 15 can be substituted into 
Equation 13, to derive the analytical expression for 
the determination of the truncation error on the j-
th modal flexibility-based interstory drift 
evaluated for the mass proportional load. This 
analytical expression is as follows 

d,r

 j, MPL
=

∑ Γi gi

 j,UPr
i=1

∑ mk
n
k=j

-1                  (16) 

where the constant term a equal to one is not 
present, since it cancels out.  

Similar operations are now performed by 
considering the uniform load scaled through the 
average mass (i.e. Equation 12) as the applied load. 
By considering this scaled version of the uniform 
load, the term cp,i becomes 

cp,i
UL= a m* ∑ ϕ

k,i
=a m*si 

n
k=1      (17) 

where the term si expresses the modal contribution 
of the i-th mode and is the summation of the 
components of the i-th mode shape (i.e. si= 
∑ ϕ

k,i
n
k=1  ). Then, the story shear at the j-th story of 



 

the structure Vj can be evaluated when considering 
the scaled version of the uniform load, i.e. 

Vj
UL= ∑ a m* n

k=j = a m* (n+1- j)     (18) 

where, as already mentioned in Section 2, n is the 
total number of the stories of the shear-type 
building. Finally, Equations 17 and 18 can be 
introduced into Equation 13. The analytical 
expression for the determination of the truncation 
error on the j-th interstory drift evaluated for the 
considered scaled version of the uniform load is 
thus 

d,r

  j, UL
=

∑ si gi

 j,UPr
i=1

n+1- j
-1        (19) 

It is worth noting that in Equation 19 the average 
mass m* is not present, since it is a constant term 
that cancels out (similarly to the constant term a). 
This also implies that the truncation errors of 
Equation 19, which are relative errors on the 
interstory drifts, are not altered if one performs a 
uniform scaling (for example, using the average 
mass m*) on the applied load, which is, in such 
case, a uniform load. 

5 NUMERICAL ANALYSES  

5.1 Numerical analyses on selected 

structural configurations of a frame 

building with mass irregularities 

Numerical analyses were performed on models 
of a building structure with mass irregularities to 
evaluate the truncation errors that affect the modal 
flexibility-based interstory drifts due to the 
uniform load, and to compare such errors with 
those obtained by applying a mass proportional 
load. The considered structure is a 6-story 
reinforced concrete (RC) frame building, which 
can be modeled as a planar shear-type building 
(Figure 1). The frame is constituted by three bays, 
and four columns with a squared cross-section 
(dimensions: 0.5×0.5 m) are present at each story. 
The elastic modulus of the concrete is assumed as 
E = 3×1010 N/m2. The beams of the frame are 
supposed to be infinitely stiff in comparison to the 
columns, and the structure is characterized by a 
uniform distribution of the story stiffness (i.e. the 
stiffness is kj=2.29×105 kN/m for each story j=1 … 
n with n =6). 

 

 
Figure 1. Six-story reinforced concrete planar frame 
building: (a) elevation; (b) shear-type model of the building 
- same building model considered in (Bernagozzi et al. 
2017a). 

 

 
Twelve different configurations of the building 

structure characterized by irregular in elevation 
distributions of the story masses were considered. 
Such configurations are reported from no. 1 to no. 
12 in Table 1, where the mass distributions are 
expressed in terms of the story mass ratios. The 
coefficient γ present in Table 1 can assume the 
following values: 1, 2, 3, 4, 5, and was used to 
introduce increasing amounts of mass 
irregularities on the considered configurations. 
Each increased mass at the j-th floor level of the 
building model can be expressed as mj = γ mref, 
where mref = 100 kN s2/m. As shown in Table 1, 
for the different configurations the mass 
irregularities were imposed in different positions, 
by considering both single and multiple locations. 
It is worth noting that the selected building model 
and the related different configurations are the 
same that were considered in the previous work by 
the authors (Bernagozzi et al. 2017a), where, on 
the contrary, the analyses have been focused on the 
evaluation of the truncation errors on the 
displacement components of the MF-based 
deflections (and not on the interstory drifts). The 
selected configurations are characterized either by 
moderate mass irregularities (i.e. more realistic 
situations) or by strong mass irregularities (which 
can be considered as more rare configurations). 
The considered wide variability in the amount of 
the mass irregularities was, in any case, chosen to 
have a complete insight of the tendencies of the 
results. Of course, if a certain configuration of 
Table 1 has all the γ coefficients equal to one, then 
the structure has a uniform distribution of the 
masses, and thus the mass proportional load 
becomes a uniform load. 



 

Table 1. Distribution of the masses of the considered 

structural configurations of the building expressed in 

terms of the story mass ratios, with  =1,2,3,4,5 - same 

configurations considered in (Bernagozzi et al. 2017a). 

j-th 

DOF 
1 2 3 4 5 6 7 8 9 10 11 12 

6  1 1 1 1 1  1 1 1  1 

5 1  1 1 1 1 1  1 1 1  

4 1 1  1 1 1  1  1  1 

3 1 1 1  1 1 1  1  1  

2 1 1 1 1  1 1 1  1  1 

1 1 1 1 1 1  1 1 1  1  

 

 

 
The calculations that were performed in the 

numerical analyses presented in this section are 
reported in the flow chart of Figure 2. At first, for 
each considered configuration (Table 1) an 
undamped numerical model of the shear-type 
building structure, expressed in terms of the 
stiffness and mass matrices, was assembled. The 
modal parameters – i.e. natural frequencies and 
mode shapes – were determined through an 
analytical modal analysis performed on the model. 
Then, the modal flexibility matrices were 
assembled, according to Equation 1, and this 
operation was repeated for all the possible subsets 
of modes to be included in the calculations (i.e. for 
r = 1 … n, where n = 6 for the considered 
building). The modal flexibility-based deflections 
were then determined, according to Equation 2, by 
applying both the mass proportional load and the 
uniform load (specifically, the uniform load scaled 
through the average story mass, as defined in 
Section 4.1). Using Equation 3, the modal 
flexibility-based interstory drifts were 
subsequently evaluated starting from the 
deflections. The interstory drifts evaluated by 
considering all the modes to assemble the modal 
flexibility (i.e. for r = n) represent the non-
truncated solutions (i.e. target solutions) and were 
used to calculate the errors that affect the truncated 
interstory drifts evaluated for a number of modes r 
= 1 … n - 1. To obtain the relative truncation errors 
on the interstory drifts related to each single story, 
Equation 5 was applied. In addition, the root-
mean-square values of the truncation errors on the 
drifts related to all the stories of the building were 
also determined, according to Equation 6. 

The results of the truncation error analysis are 
presented in this section using the following 
strategy. At first, the results are discussed for one 
structural configuration of the shear-type building 
(i.e. configuration 7) with a mass irregularity that 

Figure 2. Flow chart of the analysis carried out to compare 
the mass proportional load and the uniform load by 
evaluating the corresponding truncation errors. 

 

 
is imposed by selecting one value of the coefficient 
 (i.e. =3). Then, by considering the same 
structural configuration (i.e. configuration 7) the 
results are presented for increasing amounts of the 
mass irregularities (i.e. for all the considered 
values of the coefficient , i.e. 1, 2, 3, 4, 5). At the 
end, the results are shown for all the structural 
configurations reported in Table 1 (configurations 
from 1 to 12) and by considering a fixed mass 
irregularity (again imposed with =3). 

The modal flexibility-based interstory drifts 
obtained for configuration 7 of the shear-type 
building with a mass irregularity imposed using 
=3 are presented in Figure 3. The drifts due to the 
uniform load are reported on the left-hand side 
(Figure 3a), while the drifts due to the mass 
proportional load are on the right-hand side 
(Figure 3b). In both figures the results are shown 
for all the possible subsets of modes to be included 
in the modal flexibility (i.e. for all the different 
values assumed by the parameter r). Referring to 
the non-truncated solutions (obtained for r = n = 
6), the interstory drifts due to the uniform load 
increase linearly from the upper to the lower 
stories of the building. This trend is expected since 
the structure has a uniform distribution of the story 
stiffness, and the story shear induced by the 
uniform load increases linearly, as well, from the 
upper to the lower stories. This trend related to the 
drifts due to the uniform load is, on the contrary, 
not observed for the drifts due to the mass 
proportional load, as expected.  Referring to the 
truncated solutions, in Figure 3a it is evident that 
the profiles of the drifts due to the uniform load 



 

calculated for r=1 (i.e. using only the first mode) 
or r=2 (i.e. using only the first two modes) show 
the major discrepancies with respect to the non-
truncated drifts. On the contrary, all the profiles of 
the drifts due to the mass proportional load 
evaluated using a limited number of modes (for r 
< n) are close to the corresponding non-truncated 
drifts obtained for r = n = 6, as evident in Figure 
3b. 

Figure 4 shows the percent truncation errors 
that affect the modal flexibility-based interstory 
drifts of each story of the structure, which were 
evaluated with respect to the non-truncated 
solutions obtained for r=n. These errors are 
reported in terms of absolute values in Figure 4a 
and 4b, which are related to the calculations 
performed using the uniform load and the mass 
proportional load, respectively. For both the two 
applied loads, it is shown in Figure 4 that the errors 
on the interstory drifts at the upper stories of the 
building are in general higher than the errors 
related to drifts at the bottom of the structure. This 
trend is closely related to the fact that, for the 
considered structural configuration, the drifts at 
the upper stories are lower than the drifts at the 
bottom of the building, and thus the drifts at the 
upper stories are more significantly affected by the 
modal truncation effects. However, the important 
result of Figure 4 to be highlighted is that the  

 

truncation errors on the drifts due to the mass 
proportional load are in general lower than the 
errors on the drifts due to the uniform load. This is 
evident by considering the profiles of the drifts 
obtained for r = 1, 2, 3, 4, and especially by 
considering the drifts at the upper stories of the 
building. 

The percent truncation errors that are shown in 
Figure 4 by highlighting the trend of such errors 
along the height of the building are also plotted in 
Figure 5 but using a different strategy. In Figure 5 
errors related to each interstory are plotted 
separately, and the trend of the truncation errors is 
presented as a function of the number of the 
considered modes (i.e. the parameter r). As 
expected, by considering increasing values of the 
parameter r, the truncation errors for both the 
uniform and the mass proportional loads in general 
get lower. However, it can be observed that the 
decreasing trends of the errors related to the mass 
proportional load seem to be more regular than the 
ones related to the uniform load, as shown for 
example in Figure 5a for j=6. In addition, as 
already discussed for Figure 4, the results show 
that the errors related to the mass proportional load 
are lower than the errors related to the uniform 
load for the majority of the interstory drifts and the 

 
 

Figure 3. Interstory drifts evaluated from the modal flexibility-based deflections of the building structure (configuration 7 
with γ=3): (a) uniform load; (b) mass proportional load. 

 



 

 

Figure 4. Truncation errors on the interstory drifts of the building structure (configuration 7 with γ=3): (a) uniform load; 

(b) mass proportional load. 

 

 

 
values of the parameter r. In the few cases where 
this does not happen, the errors related to the mass 
proportional and the uniform loads are 
comparable, as evident in Figure 5.  

The results of the analyses performed by 
considering again configuration 7 of the shear-type  
building but for increasing amounts of mass 
irregularities (i.e. γ =1, 2, 3, 4, 5) are presented in 
Figure 6, where the truncations effects are 
quantified by the root-mean-square (RMS) values 
of the errors related to the single interstory drifts. 
In Figure 6 the RMS errors on the drifts are plotted 
as a function of the parameter r (reported on the x 
axis), and each of the different curves is related to 
one value of the parameter γ. Again, the results 
obtained using the uniform load (Figure 6a) are 
compared with the ones obtained using the mass 
proportional load (Figure 6b). As shown in Figure 
6, it is evident that, for all the analyzed cases, the 
RMS errors on the drifts related to the mass 
proportional load are lower than (or at least equal 
to) the errors related to the uniform load. A 
convenient and immediate way to perceive this 
result is, for example, to consider the curve of the 
RMS errors obtained for γ = 1 (which is, of course, 
equal for the uniform and the mass proportional 
loads) as a reference curve to compare the two 
graphs. Using this strategy, it is evident in Figure  

 
 
 
6a that all the uniform load RMS errors obtained 
for γ=2, 3, 4, 5 are located above the curve γ =1. 
On the contrary, as shown in Figure 6b, all the 
mass proportional load RMS errors obtained for 
γ=2, 3, 4, 5 are located below the curve γ =1.  

The results obtained for all the structural 
configurations (from 1 to 12) of the shear-type 
building by considering a mass irregularity 
imposed with =3 are shown in Table 2, where the 
RMS truncation errors on the drifts due to the 
uniform load are compared with respect to the 
errors related to the mass proportional load. It is 
worth noting that in Table 2 the column of the 
results for r=6 has been omitted to preserve space, 
and since, of course, for the considered 6-story 
shear-type structure for r=6 the errors related to 
both the UL and the MPL are equal to zero. The 
total number of the analyzed cases is 72, which is 
calculated as follows: 12 configurations × 6 values 
of the parameter r (including the case r=6). For the 
majority (i.e. 87.5%) of these analyzed cases, as 
shown in the table, the mass proportional load 
RMS truncation errors are lower than (or at least 
equal to) the errors related to the uniform load. 
Some systematic results can be observed on the 
RMS truncation errors related to interstory drifts 
obtained by including only the first structural 
mode in the calculations (i.e. for r=1). For r=1 the 



 

Figure 5. Truncation errors plotted separately for each j-th interstory drift of the building structure (configuration 7 with 

γ=3) – comparison between the UL and the MPL. 
 

 

 

Figure 6. RMS truncation errors on the interstory drifts of the building structure (configuration 7) for different mass 

irregularities: (a) uniform load; (b) mass proportional load. 
 
 

 

 

 

 

 

 



 

results show that in general the MPL errors are 
lower than the UL errors, if the mass increments 
are imposed at the upper DOFs of the building (as 
evident, for example, for configurations 
1,2,3,7,8,11). On the contrary, again for r=1, when 
the mass increments are imposed at the lower 
DOFs of the building, the UL errors are in general 
lower than the MPL errors (with only one 
exception – i.e. configuration 12, for which, even 
if the mass irregularities are applied at the lower 
stories, the errors related to the UL and MPL loads 
are comparable for r=1). It is worth noting that 
these general trends observed for the analyses 
conducted by including only the first mode to 
estimate the MF-based interstory drifts are the 
same general trends that were observed in the 
previous work by the authors (Bernagozzi et al. 
2017a) in the analyses performed on the 
displacement components of deflections 
assembled again with r=1. When considering, on  
 

 

Table 2. RMS truncation errors on the interstory drifts of 

the building structure – different structural configurations 

with a fixed mass irregularity (γ = 3). 

Con. Load  
RMS errors on drifts   d,r

RMS (%) 

r=1 r=2 r=3 r=4 r=5 

1 
UL 60.6 6.0 7.7 0.9 1.1 

 
MPL 12.3 3.7 1.6 0.7 0.3 

 

2 
UL 27.8 24.3 7.9 3.6 0.1 

 
MPL 11.6 4.6 5.3 1.1 0.4 

 

3 
UL 17.3 23.5 5.8 5.5 1.5 

 
MPL 12.6 9.6 1.8 0.9 0.5 

 

4 
UL 10.7 9.2 11.2 2.5 2.3 

 
MPL 16.3 4.9 2.8 0.8 0.6 

 

5 
UL 5.7 6.2 4.4 7.1 1.5 

 
MPL 22.0 3.7 2.2 2.3 0.1 

 

6 
UL 12.3 4.3 3.3 1.7 0.7 

 
MPL 24.7 7.4 1.4 0.4 0.1 

 

7 
UL 40.1 15.9 14.1 10.9 1.5 

 
MPL 11.4 4.5 1.2 0.8 0.4 

 

8 
UL 20.7 21.7 9.7 9.5 0.3 

 
MPL 13.3 3.5 5.9 0.7 0.6 

 

9 
UL 16.4 18.2 7.0 6.9 9.4 

 
MPL 17.1 5.7 1.5 1.5 0.5 

 

10 
UL 10.6 8.5 6.7 4.1 2.9 

 
MPL 22.1 11.7 0.8 0.4 0.1 

 

11 
UL 33.8 11.6 13.2 10.4 12.3 

 
MPL 15.6 4.9 1.1 1.2 0.6 

 

12 
UL 19.7 20.6 18.3 8.5 8.0 

 
MPL 17.8 7.3 0.9 0.3 0.2 

 

the contrary, the RMS truncation errors obtained 

for higher values of the parameter r (i.e. for r > 1), 

it is evident in Table 2 that the MPL errors are in 

general lower than the UL errors (with only very 

few exceptions, for which, in any case, the 

percentages of the MPL and UL truncation errors 

are comparable). 

5.2 Parametric studies on frame 

buildings with a different number of 

stories 

In this section the results of parametric studies for 
truncation error analysis performed on frame 
buildings with a different number of stories are 
presented. The considered structures are shown in 
Figure 7, and such structures are, respectively, a 2-
story frame, a 3-story frame, a 4-story frame, a 5-
story frame, and a 6-story frame. For each 
structure the following parametric study is 
performed. It is assumed that each floor level can 
be characterized by a value of the story mass ratio 
expressed by the coefficient γ, and that such 
coefficient can take each of the following discrete 
values: 1, 2, 3, 4, 5. Under these assumptions, for 
each structure all the possible combinations of 
mass distributions (i.e. all the possible 
combinations of the story mass ratios at the 
different floor levels) are analyzed. In general, for 
a n story structure the number of the considered 
combinations of mass distributions is equal to Nn, 
where N is the number of the different values that 
the coefficient γ can assume (i.e. equal to 5 in such 
case). 

By considering all these different combinations 
of mass distributions, the purpose is to quantify the 
cases (i.e. the percentages of such cases evaluated 
with respect to the total number of analyzed 
combinations) for which the mass proportional 
load provides truncation errors on the modal 
flexibility-based interstory drifts that are lower 

 
 

 
Figure 7. Shear-type structural models with a different 
number of stories considered in the parametric study: a) 
2-story frame; b) 3-story frame; c) 4-story frame; d) 5-
story frame; e) 6-story frame. 



 

than (or at least equal to) the errors related to the 
application of the uniform load. If the comparison 
is made between truncation errors evaluated for a 
single interstory of the building, the percentage of 
cases for which |r

j,MPL | ≤  |r
j,UL| is indicated with 

the symbol ηr
j, where r is the number of the 

included modes. It is worth noting that in the 
above-mentioned expression the subscript d, 
which according to the notation used in the paper 
stands for drifts, has been omitted for simplicity. If 
the comparison is made between errors averaged 
along the height of the building using the root-
mean-square criterion, the percentage of cases for 
which r

RMS, MPL ≤  r
RMS, UL is indicated as ηr

RMS. 
For the purposes of the present study, the 
percentages ηr

j and ηr
RMS thus denote positive 

cases, for which the MPL provides better (or at 
least equal) performance with respect to the UL.  

In the performed parametric study several 
configurations of the considered building models 
were taken into account, and to calculate the errors 
on the drifts the analytical expressions derived in 
Section 4.2 have been used in place of Equation 5. 
This was a convenient choice that has been made 
to reduce the computational costs of the analyses. 
In fact, as already mentioned in Section 4.2, the 
derived analytical expressions for evaluating the 
truncation errors on the MF-based interstory drifts 
of shear-type buildings have the advantage that 
there is no need to assemble the modal flexibility 
matrices in the calculations. In particular, in the 
performed parametric study the analytical 
expressions specifically derived for the mass 
proportional load (i.e. Equation 16) and the 
uniform load (i.e. Equation 19) have been adopted.  

The results of the parametric study are 
presented at first by comparing the truncation 
errors related to single interstory drifts and by 
considering the case of the 6-story structure. Then, 
the results are presented by comparing the 
truncation errors averaged using the RMS criterion 
and by presenting the results for all the considered 
buildings with a different number of stories.  

Table 3 shows the percentages of cases for 
which |r

j,MPL | ≤  |r
j,UL| for analyses performed on 

the single interstory drifts of the 6-story structure. 
The number of the considered combinations of 
mass distributions for the 6-story building is equal 
to 15625 (i.e. Nn, with N=5 and n=6). The 
percentages ηr

j are presented in Table 3 for 
different values of j (from 1 to 6) and for different 
values of the parameter r (from 1 to 5). Of course, 
for r=6 there are no truncation errors, and thus the 
performance of MPL is ideally equal to the UL, 
with values of ηr

j for r=6 that are 100% for each 
interstory j. In Table 3 the column of the results ηr

j 

for r=6 is thus not shown, to preserve space. As  

Table 3. Percentages of cases (%) for which |r
j,MPL | ≤  

|r
j,UL|: 6-story frame – 15625 combinations. 

j-th 

story 
η1

 j η2
 j η3

 j η4
 j η5

 j 

6 71.4 78.1 86.9 92.7 92.3 

5 55.6 76.4 91.4 93.9 92.9 

4 49.1 88.3 84.5 93.1 92.8 

3 45.8 74.0 87.7 88.3 92.6 

2 66.6 53.6 76.9 89.3 92.2 

1 53.4 62.8 75.4 89.1 92.2 

 
 
evident in Table 3, the percentages of positive 
cases, for which the MPL provides better (or at 
least equal) performance with respect to the UL, 
are in general high. Such percentages tend to 
increase as the number of included modes r 
increases, and only few of these percentages are 
approximately around 50% especially for r=1. 

Figure 8 and Table 4 show the percentages of 
cases for which r

RMS, MPL ≤  r
RMS, UL, where 

truncation errors averaged along the height of the 
buildings using the RMS criterion are considered. 
In particular, Figure 8 shows the results obtained 
for the 6-story frame in a stacked bar plot, where 
the dark grey bars represent the percentages ηr

RMS 

(i.e. positive cases). While, Table 4 shows the 
results obtained for all the analyzed buildings with 
a different number of stories, and the percentages 
ηr

RMS are reported as a function of the parameter r, 
which, for each different structure with n stories,  

 

 

 
Figure 8. Analysis of the RMS truncation errors on the 
interstory drifts of the 6-story frame; evaluation of the 
percentages for which r

RMS, MPL ≤  r
RMS, UL (15625 

combinations). 



 

Table 4. Percentages of cases (%) for which r
RMS, MPL  ≤  

r
RMS, UL: results for all the analyzed buildings with a different 

number of stories. 

n #comb. η1
RMS η2

RMS η3
RMS η4

RMS η5
RMS 

2 25 76.0 100.0 - - - 

3 125 76.8 87.2 100.0 - - 

4 625 74.7 92.6 87.7 100.0 - 

5 3125 76.0 94.1 96.0 90.8 100.0 

6 15625 76.5 94.6 97.5 98.4 92.4 

 

 

varies from 1 to n. It is worth noting that in Table 

4 the column of the results ηr
RMS for r=6 has been 

omitted to preserve space, and since, of course, for 

the 6-story structure the percentage ηr
RMS for r=6 is 

equal to 100%. As evident in Figure 8 and Table 

4, the percentages of positive cases, for which the 

mass proportional load provides better (or at least 

equal) performance with respect to the uniform 

load, are in general very high, especially when at 

least the first two structural modes of the 

considered buildings are included in the 

calculations (i.e. for r ≥ 2). 

6 CONCLUSIONS  

The work has been dedicated to the study of the 
modal truncation errors that affect the interstory 
drifts computed from modal flexibility-based 
deflections of shear-type buildings with irregular 
in elevation mass distributions. In particular, an 
attempt was made to reduce the modal truncation 
errors specifically on the interstory drifts since 
such parameters are considered as damage-
sensitive features in some damage detection 
procedures developed for building structures, as 
shown, for example, in (Koo et al. 2010). 
According to these procedures, the deflections and 
related drifts are usually computed from the modal 
flexibility by applying uniform inspection loads. 
On the contrary, in the analyses of the present 
paper the interstory drifts have been computed by 
applying an alternative load, which is defined as 
mass proportional load. This load has been 
proposed in a previous work by the authors, i.e. 
(Bernagozzi et al. 2017a), where, on the contrary, 
some analyses have concerned the evaluation and 
reduction of the modal truncation effects on the 
displacement components of the deflections. 

In the present paper, numerical analyses have 
been conducted on shear-type models of mass 
irregular building structures. In a first analysis 
twelve configurations with different mass 

distributions of a 6-story frame and, specifically, 
with increasing amounts of the mass irregularities 
have been considered. In a second analysis five 
building structures with a different number of 
stories (from two to six stories) have been selected, 
and then analyzed by considering all the different 
combinations of mass distributions that derive 
from selecting a range of potential values for the 
story mass ratios. For all the performed analyses, 
the truncation errors on interstory drifts evaluated 
for the mass proportional load have been 
compared with those derived from the uniform 
load. In general, the results of all the performed 
analyses showed that for the vast majority of the 
considered structural configurations, the errors 
related to the mass proportional load are lower 
than the errors of the uniform load. In the few cases 
where this does not happen, the errors are at least 
comparable with each other. 

Based on the obtained results, it seems that the 
mass proportional load can be considered as a 
good alternative to the uniform load, when 
considering buildings with irregular in elevation 
mass distributions and for the specific purpose of 
reducing the truncation effects on the modal 
flexibility-based interstory drifts. It is expected in 
fact that reducing the errors on these parameters, 
commonly assumed as damage-sensitive features, 
might also be beneficial for reducing the impact 
that the modal truncation effects might have on 
other quantities related to the damage detection 
process, such as, for example, damage indices and 
metrics. As a final remark, it is worth noting that 
the mass proportional load is a load that, 
intrinsically, is system dependent. It is thus 
expected that the mass proportional load might 
have an applicability, as inspection load in the 
damage detection procedures based on modal 
flexibility-based deflections and interstory drifts, 
especially for building structures for which the 
masses are unchanged before and after the 
occurrence of potential damage. 
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