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ABSTRACT  

The work evaluates the optimal properties of friction pendulum system (FPS) devices for the seismic protection of 

bridge piers under earthquake excitations having different frequency characteristics representative of different soil 

conditions in order to reduce the seismic vulnerability of infrastructures. A two-degree-of-freedom model is 

adopted to describe, respectively, the response of the infinitely rigid deck isolated by the FPS devices and the 

elastic behavior of the pier. By means of a non-dimensional formulation of the motion equations, a wide parametric 

analysis for several structural parameters is carried out. Seismic excitations, modelled as time-modulated filtered 

Gaussian white noise random processes having different intensities and frequency contents, are considered. 

Specifically, the filter parameters, which control the frequency contents, are properly calibrated to reproduce stiff, 

medium and soft soil conditions, respectively. Finally, the optimum values of the sliding friction coefficient able to 

minimize the pier displacements with respect to the ground are derived as a function of the structural properties, of 

the seismic input intensity and of the soil condition.  

 

1 INTRODUCTION 

Seismic isolation of bridges makes it possible 

to uncouple the deck from the horizontal 

components of the earthquake motion, leading to 

a substantial reduction of the deck acceleration 

and, consequently, of the forces transmitted to the 

pier (Tsopelas et al. 1996), (Tongaonkar and 

Jangid 2003). In the last years, friction pendulum 

system (FPS) devices have often been preferred 

to other isolators for their capability of providing 

an isolation period independent of the mass of the 

supported structure, their capacity to assure high 

dissipation and recentering, and their longevity 

and durability properties (Ahmadi and 

Tadjbakhsh 1976-1992), (Landi et al. 2016). In 

(Castaldo and Tubaldi 2015), with reference to an 

equivalent two-degree-of-freedom (2dof) model 

for base-isolated building frames, a non-

dimensionalization of the motion equation 

considering different isolator and system 

properties has been proposed. Contextually, other 

studies have been focused on the seismic 

response of bridge isolated with sliding pendulum  

isolators highlighting the advantages (Young-Suk 

and Chung-Bang 2007), (Murat and DesRoches 

2008). Moreover, other works have been more 

oriented to develop design approaches for the 

isolators and to identify the optimal isolator 

properties. In this context, the seismic reliability-

based design (SRBD) approach has been 

proposed and widely discussed in (Castaldo et al. 

2015), (Palazzo et al. 2014) as a new 

methodology useful to provide design solutions 

for seismic devices taking into account the main 

uncertainties relevant to the problem. Jangid in 

(Jangid 2005), assuming a stochastic model of the 

earthquake ground motion, considered the 

seismic performance of a bridge equipped with 

FPS devices, characterized by a Coulomb 

behavior, illustrating that there exists an optimal 

value of the friction coefficient for which the pier 

base shear and deck acceleration can be 

minimized. Other works e.g. (Dicleli and 

Buddaram 2006), (Saritaş and Hasgür 2014), 

(Wai-Fah and Lian 2014), concerning isolated 

bridges have also demonstrated that soft soil 

condition leads to a higher demand in terms of 

displacements and shear forces by negatively 

influencing the isolated systems. In (Castaldo and 



 

Tubaldi 2018), the optimal values of the friction 

coefficient taking into account the influence of 

the ground motion characteristics by means of the 

ratio between the Peak Ground Acceleration 

(PGA) and the Peak Ground Velocity (PGV) have 

been proposed.  

This work investigates the influence of soil 

characteristics in terms of frequency content on 

the seismic performance of bridges isolated with 

FPS isolators to define the optimal sliding friction 

coefficients. The two-degree-of-freedom model, 

as employed in (Young-Suk and Chung-Bang 

2007), (Masoud and Touraj 2012) is used for this 

purpose as an equivalent model representative of 

the dynamic behaviour of a single-column bent 

viaduct to describe, respectively, the seismic 

response of the infinitely rigid deck isolated by 

the FPS devices and of the elastic behavior of the 

pier. In compliance with the non-

dimensionalization of the motion equations 

presented for base-isolated building frames in 

(Castaldo and Tubaldi 2015), in this study, a non-

dimensionalization of the motion equations for 

isolated bridges is proposed in order to carry out 

a wide parametric analysis considering different 

values of the structural properties and three 

different sets of artificial ground motion records. 

These latter ones are modelled as non-

stationary stochastic processes and generated 

through the power spectral density method 

(Shinozuka and Deodatis 1991), with different 

frequency contents corresponding to stiff, 

medium and soft soil conditions (Pinto et al. 

2004), respectively. Specifically, for each set of 

the random excitations, numerical simulations are 

executed to estimate the influence of the 

characteristic system and isolator properties on 

the response parameters relevant to the structural 

performance. Then, the optimal values of the 

sliding friction coefficient, able to minimize the 

pier displacements relative to the ground, are 

defined as a function of the structural parameters, 

of the seismic input intensity and of the soil 

condition.  

2 NON-DIMENSIONAL MOTION 

EQUATIONS FOR ISOLATED BRIDGES 

Assuming an equivalent 2dof model, the 

motion equations governing the response of a 

bridge equipped with single concave FPS devices 

(Figure ), subjected to the seismic input, ( )gu t    

apply: 

( ) ( ) ( ) ( ) ( )
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where
du denotes the displacement of the deck 

relative to pier, pu  the pier displacement relative 

to the ground, 
dm  and pm  respectively the mass 

of the deck and of the pier bridge, pk  and pc  

respectively the pier stiffness and inherent 

viscous damping coefficient, 
dc  the bearing 

viscous damping factor, t  the time instant, the dot 

differentiation over time, and ( )bf t  indicates the 

FPS force, that can be evaluated as: 

( ) ( ) ( ) ( )sgnb d d d d df t k u t u m g u= +   (2) 

where / /d dk W R m g R= = , g  is the gravity 

constant, R is the radius of curvature of the FPS, 

( )( )du t  the sliding friction coefficient, which 

depends on the bearing slip velocity ( )du t , and 

sgn(∙) denotes the sign function. It follows that, 

similarly to base-isolated structures (Castaldo and 

Tubaldi 2015), the fundamental vibration period 

of an isolated bridge, 2 /
d

T R g= , 

corresponding to the pendulum component, is 

independent of the deck mass and related only to 

the radius of curvature R. 

According to (Mokha et al. 1990), 

(Constantinou et al. 2007), the sliding friction 

coefficient of teflon-steel interfaces can be 

expressed as: 

( ) ( )max expd du f Df u = −  −  (3)  

where maxf  and min maxf f Df= −  represent, 

respectively, the maximum value of sliding 

friction coefficient attained at large velocities and 

the value at zero velocity. In this study, it is 

considered that max min3f f=  with the exponent   

equal to 30 (Castaldo and Tubaldi 2015). 

Considering the maximum value of the sliding 

friction coefficient, the effective stiffness of the 

FPS bearings 
( )max1/ /eff dk W R f u= +

as well as 

the corresponding effective isolated period 

d,effT (Kelly 1997), (Building Seismic Safety 

Council 2006), (Figure 1) can be computed 

depending on the displacement demand. Note that 

Equations (1a,b) does not consider the effects of 

the higher modes due to flexibility of the pier and 



 

is verified if only the horizontal component of the 

bearing displacement is considered (Castaldo et 

al. 2017) (i.e., high radii of curvature R). 

Furthermore, the equivalent 2dof model (Young-

Suk and Chung-Bang 2007), (Masoud and Touraj 

2012) can be assumed representative of the 

dynamic behaviour of a single-column bent 

viaduct as long as the bridge is straight and 

consists of a large number of equal spans, of piers 

with equal height/stiffness and considering a 

superstructure (deck) that can be assumed to 

move as a rigid body (Priestley et al. 1996).  

Let us introduce the time scale dt =  in 

which /d d dk m =  is the fundamental circular 

frequency of the isolated system with infinitely 

rigid superstructure, and the seismic intensity 

scale 0a , expressed as 0( ) ( )gu t a =  where ( )  

is a non-dimensional function of time describing 

the seismic input time-history, the following non-

dimensional equations can be obtained and herein 

proposed for isolated bridges: 
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where /p p pk m =  and / 2p p p pc m =  

represent respectively the circular frequency and 

damping factor of the pier bridge; 

/ /d d dk m g R = =  and / 2d d d dc m =  are 

respectively the circular frequency and the 

isolator damping factor of the FPS isolator; 

/p dm m =  (Young-Suk and Chung-Bang 2007), 

(Masoud and Touraj 2012), (Kelly 1997) the 

mass ratio. The non-dimensional parameters 
2

0

d d
d

u

a


 =  and 

2

0

p d

p

u

a


 =  describe the dynamic 

response of the deck and the pier, respectively. 

From Equations (4a,b), it is possible to 

observe that the five non-dimensional   terms 

(Castaldo and Tubaldi 2015), (Karavasilis et al. 

2011), (Barbato and Tubaldi 2013) that govern 

the system non-dimensional response are: 
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(1a,b,c,d,e) 

where   represents the isolation degree 

(Kelly 1997), (Palazzo 1991),   is the mass 

ratio as previously defined, 
p  and 

d  are 

related to the inherent viscous damping of the 

pier and the isolator, respectively,   denotes 

the isolator strength which depends on both the 

friction coefficient ( )du  and the seismic 

intensity. Since the sliding friction coefficient is a 

velocity-dependent parameter,   is considered 

as follows (Castaldo and Tubaldi 2015):  

* max

0

f g

a
 =

 

(6) 

From Equations (4a,b)-(6), note that only the 

non-dimensional terms 
d ,

p ,  ,  , 
*

 , 

the function ( ) , describing the frequency 

content and time-modulation of the seismic input, 

and the time scale parameter 
d  influence the 

non-dimensional seismic response of the bridge 

system isolated by FPS.  
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Figure 1. 2dof model of a bridge isolated by FPS bearings. 

3 UNCERTAINTIES RELATED TO THE 

SEISMIC INPUT 

This section describes the stochastic model 

employed for the generation of the artificial 

ground motions in order to reproduce the 



 

uncertainty in terms of frequency characteristics 

for different soil conditions as well as the 

uncertainty corresponding to the seismic 

intensity. 

3.1 Random excitations 

The "record-to-record" variability in terms of 

the dynamic characteristics of different seismic 

inputs related to stiff, medium and soft soil 

conditions, respectively, is herein described by 

means of three corresponding wide groups of 

artificial records having different frequency 

contents. These artificial inputs are modelled as 

time-modulated filtered Gaussian white noise 

random processes (Shinozuka and Deodatis 

1991), (Pradlwarter et al. 1998) within the power 

spectral density (PSD) method (Tung et al. 1992) 

by adopting the Kanai-Tajimi model (Kanai 

1957), (Tajimi 1960), modified by Clough and 

Penzien (Clough and Penzien 1993), (Saritaş and 

Hasgür 2014), (Zentner et al. 2014), (Tubaldi et 

al. 2012), as follows: 

4 2 2 2

2 2 2 2 2
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02 2 2 2 2
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g g g
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g g g

f f f
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
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+
= 
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
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in which 0S  is the amplitude of the bedrock 

excitation spectrum, modeled as a white noise 

process; f  and f  are the Clough-Penzien filter 

parameters assumed as deterministic values, set 

equal to 1.6f = (rad/s) and 0.6f = ;   is the 

circular frequency, assumed varying in the range 

0 and 50 rad/s; g  and g  represent the 

fundamental circular frequency and damping 

factor of the soil, respectively, assumed as 

uniformly distributed independent random 

variables with appropriate ranges of variation 

(Pinto et al. 2014), (Talaslidis et al. 2004) as 

follows: g  varies in the range 5-9 rad/s (high 

frequency/short period) with g =0.6-1 for stiff 

soil condition, g  is assumed ranging between 3 

rad/s and 5 rad/s (intermediate frequency/ period) 

with g =0.4-0.6 for medium soil condition, and, 

finally, g  ranges from  to 3 (low 

frequency/high period) with g =0.2-0.4 for soft 

soil condition. Specific sampling techniques 

(Castaldo et al. 2018a), (Castaldo et al. 2018b) 

are used to sample the data. Assuming the same 

duration (Hancock and Bommer 2006), (Hancock 

and Bommer 2007) equal to 31.25 s, longer than 

25s as provided from (NTC2008 2008), the 

Shinozuka-Sato function (Shinozuka and Sato 

1967) is adopted as time-modulating function in 

order to define non-stationary stochastic 

processes for each set corresponding to each soil 

condition. Specifically, 100 artificial (non-

stationary stochastic processes) records, 

generated through the Spectral Representation 

Method (Shinozuka and Deodatis 1991) and 

reflecting the wide uncertainty in terms of 

frequency content for each soil type (Pinto et al. 

2004), (Talaslidis et al. 2004), (Armouti 2003) 

are defined for each soil condition. 
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Figure 1 . PSD functions corresponding to stiff, medium 
and soft soil conditions (a); Pseudo-acceleration response 
spectra for the 300 records scaled to the common seismic 
intensity measure SA(T) = 0.1 g, for T=4s (b). 

Note also that, for each set of artificial records a 

high number of random excitations is defined in 

order to highly reduce the standard errors of the 

statistics of the response parameters (Castaldo et 

al. 2017). As an example, Figures 2(a)-(b) show, 

respectively, the sampled PSD functions and the 

elastic pseudo-acceleration response spectra of 

the 300 artificial records, scaled to the common 

IM value SA(T) = 0.1g, for a period T = 4s. 



 

3.2 Intensity measure 

In order to take into account the uncertainty 

related to the seismic intensity, the intensity scale 

factor, 0a , of Equations 

(

Errore. L'origine riferimento non è stata trovata.

a,b), represents the seismic intensity measure 

(IM) in the context of the performance-based 

earthquake engineering (PBEE) (Aslani and 

Miranda 2005), (Porter 2003). In this study, the 

abovementioned IM is denoted by the spectral 

pseudo-acceleration, ( ),A d dS T  , corresponding 

to the isolated period of the bridge 2 /d dT  =  

with the damping ratio 
d d  = . Note that, in the 

analyses herein developed, the damping ratio 
d  

is set equal to zero (Castaldo and Tubaldi 2015), 

(Jangid 2005), (Ryan and Chopra 2004) and the 

corresponding IM is hereinafter denoted as 

( )A dS T . 

4 PARAMETRIC STUDY 

This section describes the results of the 

parametric study carried out on the system of 

Figure  to evaluate the seismic performance of 

bridge isolated with FPS bearings for different 

structural properties and soil conditions. The first 

subsection describes the response parameters 

relevant to the seismic performance, whereas the 

final subsection illustrates the parametric study 

results. More details may be found in (Castaldo et 

al. 2018c). 

4.1 Non-dimensional response parameters 

relevant to the seismic performance 

assessment 

The following response parameters relevant to 

the seismic performance assessment of isolated 

bridges are considered: the peak deck 

displacement relative to the pier d,maxu , the peak 

pier displacement p,maxu . These latter ones can be 

defined in non-dimensional form, as expressed in 

Equations (4a,b), as: 

( ) ( )

( ) ( )

2
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2
p,max p,max
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(8a,b) 

For each soil condition (i.e., set of the 100 ground 

motion records), Equations (4a,b) is repeatedly 

solved computing a set of samples for each 

response parameter. As also described in 

(Castaldo and Tubaldi 2015), (Palazzo et al. 

2014), (Ryan and Chopra 2004), (Karavasilis and 

Seo 2011), the response parameters are modeled 

in probabilistic terms by means of a lognormal 

distribution. Specifically, the generic response 

parameter D (i.e., the extreme values 
du , 

pu  of 

Equation (4a,b)) can be fitted by a lognormal 

distribution estimating the sample geometric 

mean, ( )GM D , and the sample lognormal 

standard deviation ( )ln D , or dispersion ( )D , 

defined, respectively:  

( ) 1 ...N
NGM D d d=    (9) 

( ) ( )

( )( ) ( )( )

ln

2 2
1ln ln .. ln ln

1

N

D D

d GM D d GM D

N

 = =

−   + + −     
=

−

 

 

(10) 

in which di is the i-th sample value of D, and N 

represents the total number of samples. The kth 

percentile of the generic response parameter D 

can be evaluated as: 

exp[ ( ) () )( ]kd f kGM D D=  (11) 

where ( )f k  is a function that assumes the 

following values (50) 0f = , (84) 1f =  and 

(16) 1f = − (Ang and Tang 2007), for the 50th, 

16th and 84th percentile, respectively.  

4.2 Parametric study results for each soil 

condition 

In this section, the results of the parametric 

study developed using the proposed non-

dimensionalization, for the different structural 

properties and for each set of 100 records, are 

illustrated and discussed. According to several 

studies (Tsopelas at al. 1996), (Jangid 2004), 

(Tongaonkar and Jangid 2003), (Young-Suk and 

Chung-Bang 2007), (Murat and DesRoches 

2008), (Masoud and Touraj 2012), (Yen-Po et al. 

1998), (Jangid 2008), the parameters 
d d  =  

and 
p p  =  are assumed respectively equal to 

0% and 5%, the isolation period Td varies in the 

range between 2s and 4s, the pier period Tp 

ranges from 0.05s to 0.2s,   = varies between 



 

0.1 and 0.2, 
*

  ranges between 0 (no friction) 

and 2 (very high friction) (Castaldo and Tubaldi 

2015). Other uncertainties are not considered. 

Indeed, a high value for the upper bound of 
*

  is 

considered in order to take also into account the 

very low values of the IM at high isolated periods 

(i.e., Td=4s) depending on the seismic hazard 

(NTC2008 2008). For each parameter 

combination, the differential motion equations, 

i.e., Equations (4a,b), have been repeatedly 

solved adopting the Bogacki-Shampine 

integration algorithm available in Matlab-

Simulink (Math Works Inc. 1997). After that, for 

each normalized response parameter, the 

geometric mean, GM, and the dispersion, , have 

been evaluated through Equations (9) and (10) 

and are plotted in Figures. 3-10 for each soil type. 

Each figure contains several meshes, 

corresponding to the different  . The results for 

deck and pier displacements related to the all pier 

periods are reported.  

Figures 5-8 plot the results concerning the 

normalized deck displacement 
du , related to 

different pier period values. ( )
duGM   is quite 

perfectly equal to unit for 
* 0 =  and pT = 0.05 

because of the very reduced influence of the pier 

behaviour. For 
* 0  , and ( )

duGM   increases 

slightly for increasing dT  because of the period 

elongation. Obviously, ( )
duGM   decreases 

significantly as 
*

  increases while it is not 

heavily influenced by  . For soft soil condition 

and low 
*

  values, the decrease of ( )
duGM   

for increasing 
*

  is more gradual, while, for 

high 
*

  values ( )
duGM   increases in the case 

of stiff soil, especially, for high pT  values due to 

the pier influence. The dispersion ( )
du   for 

high dT  increases for increasing values of 
*

 , as 

a result of the reduction of the efficiency of the 

IM employed in the study for each soil condition. 

Moreover, with reference to soft soils, the values 

of ( )
du   also result to be the highest for low or 

high values of both dT  and 
*

 . Obviously, in the 

reference situation corresponding to 
* 0 =  and 

pT =0.05s, the dispersion is zero for all the values 

of dT  and of   considered and for all the soil 

conditions. The mass ratio   does not affect 

significantly the response dispersion, especially 

in the case of high pT  values. 
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Figure 3 . Normalized deck displacement vs. 

 and Td for 
Tp =0.05s and each soil condition: median value (a,b,c) and 
dispersion (d,e,f) for different values of l. The arrow 
denotes the increasing direction of . 
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Figure 4 . Normalized deck displacement vs. 

 and Td for 
Tp =0.1s and each soil type: median value (a,b,c) and 
dispersion (d,e,f) for different values of l. The arrow 
denotes the increasing direction of . 
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Figure 5 . Normalized deck displacement vs. 

 and Td for 
Tp =0.15s and each soil type: median value (a,b,c) and 
dispersion (d,e,f) for different values of l. The arrow 
denotes the increasing direction of . 

The above described peak values of both 

( )
duGM   and ( )

du   in the case of soft soil 

condition are high due to the resonance effects 

which mainly affect the effective frequency 

charactering the dynamic behaviour of the 

frictional bearings and the dominant frequency of 

the corresponding random excitations. 

Figures. 6-10 show the response statistics of 

the normalized pier displacements 
pu . 

( )
puGM   decreases for increasing values of dT  

and of   as well as for decreasing values of pT , 

whereas it first decreases and then increases for 

increasing values of 
*

 . Thus, this means that 

there exists an optimal value of the normalized 

friction coefficient 
*

  such that the pier 

displacement is minimized for each soil 

condition. This optimal value is in the range 

between 0.1 and 0.3 and depends on the values of 

pT , dT ,   and on the soil condition. Differently 

to the case of base-isolated systems, there is not a 

particular and specific trend of the optimal 

friction coefficients from stiff to soft soil 

condition, as discussed later in detail. There is a 

further increase in the value of ( )
puGM   from 

soft soil to stiff soil due to resonance effects, 

especially, for lower values of dT . The values of 

the dispersion ( )
pu   are very low for low 

*

  

values due to the high efficiency of the IM used 

in this work, and attain their peak for values of 
*

  close to the optimal ones. The other system 

parameters have a reduced influence on ( )
pu   

compared to the influence of 
*

 . For the soft soil 

condition, the dispersion ( )
pu   strongly 

increases for increasing values of 
*

  for low 

isolation period and for higher pier periods 

because of the resonance effects which mainly 

affect the effective frequency of the frictional 

bearings and the dominant frequency of the 

corresponding random excitations.  

 

 

 

     *

 [-]  [s]dT

G
M

(
u

  
) 

d
 

a) 



Stiff soil 

 
 



 

             
*

 [-]  [s]dT

G
M

(
u

  
) 

d
 

b) 

 

Medium soil 

 

              
*

 [-]
 [s]dT

G
M

(
u

  
) 

d
 

c) 

 

Soft soil 

 

    

d) 


(

u
  
) d
 

*

 [-]
 [s]dT

 

Stiff soil 

 

            

e) 


(

u
  
) d
 

*

 [-]
 [s]dT



Medium soil 

 

              

f) 


(

u
  
) 

d
 

*

 [-]
 [s]dT

 

Soft soil 

 
Figure 6 . Normalized deck displacement vs. 

 and Td for 
Tp =0.2s and each soil type: median value (a,b,c) and 
dispersion (d,e,f) for different values of l. The arrow 
denotes the increasing direction of . 
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Figure 7. Normalized pier displacement vs. 

 and Td for 
Tp =0.05s and each soil condition: median value (a,b,c) and 
dispersion (d,e,f) for different values of l. The arrow 
denotes the increasing direction of . 

As observed in similar studies (Castaldo and 

Tubaldi 2015), (Jangid 2005), (Chung et al. 

2013), (Fallah and Zamiri 2013), the existence of 

an optimal value of the friction coefficient derives 

from a combination of different effects. Indeed, 

an increase of the sliding friction coefficient leads 

to higher isolator strengths (and thus higher 

values of the equivalent stiffness, with a lowering 

of the corresponding effective fundamental 

vibration period ) and higher forces towards the 

deck. This also leads to an increase in the forces 

transmitted to the pier bridge due to inertial 

effect, relative to deck mass, on the pier. 
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Figure 8. Normalized pier displacement vs. 

 and Td for 
Tp =0.1s and each soil condition: median value (a,b,c) and 
dispersion (d,e,f) for different values of l. The arrow 
denotes the increasing direction of . 
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Figure 9 . Normalized pier displacement vs. 

 and Td for 
Tp =0.15s and each soil condition: median value (a,b,c) and 
dispersion (d,e,f) for different values of l. The arrow 
denotes the increasing direction of . 
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Figure 10 . Normalized pier displacement vs. 

 and Td for 
Tp =0.2s and each soil condition: median value (a,b,c) and 
dispersion (d,e,f) for different values of l. The arrow 
denotes the increasing direction of . 

5 OPTIMAL SLIDING FRICTION 

COEFFICIENTS FOR ISOLATED 

BRIDGES DEPENDING ON SOIL 

CONDITIONS 

From the results defined in the previous 

section, for each parameter combination (i.e., 

  
dT  and pT ) and soil condition, the optimal 

values of the normalized sliding friction 

coefficient, 
*

,opt , that minimize the median 

(50th percentile) normalized pier displacements 

pu  have been computed and are illustrated in 

Figure 11. Minimizing the pier displacements 

relative to the ground represents a notable design 

requisite for the safety of bridges in order to 

assure an adequate seismic protection. In fact, an 

inelastic response of the pier can lead to a 

disproportionately large displacement response 

that could also be amplified in the case of the 

resonance effects. Figure 11 shows the variation 

of 
*

,opt  with   and pT  for dT  = 2s (Figure 

11a,b,c) and dT  = 4s (Figure 11d,e,f), for the 

three soil conditions.  
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Figure 11 . Optimal values of normalized friction that 
minimize the 50th percentile of the normalized pier 
displacements vs. l and Tp for each soil type and for Td 
=2s (a,b,c) and Td =4s (d,e,f). 



 

According to (Jangid 2005), the optimal values 

of the (normalized) sliding friction coefficient 

slightly increase for decreasing 
dT , especially for 

low pT  and for each soil condition. It is also 

observed that, for low 
dT , *

,opt  generally 

decreases by increasing   and pT . This trend is 

reversed with increasing of 
dT  and soil stiffness, 

when it is necessary to dissipate more energy, due 

to the resonance effects.  
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Figure 12 . Optimal values of normalized friction that 
minimize the 84th and 16th percentiles of the normalized 
pier displacements vs. l  and Tp for each soil type and for 
Td =2s (a,b,c) and Td =4s (d,e,f). 

As previously discussed, it is also possible to 

observe that higher values of the optimum 

friction coefficient are required, especially for 

low isolated periods, for soft soil condition in 

order to reduce the bearing displacements and, 

consequently, the forces transmitted to the pier as 

well as to increase the energy dissipation 

(equivalent damping). A reversal of this trend 

occurs for high values of both the isolation period 

and pier period, when it is necessary to dissipate 

more seismic energy input due to the resonance 

effect that affects the pier for stiff soil condition. 

In order to assure a high safety level, it might be 

of interest to define the values of 
*

,opt  that 

minimize others response percentiles (Ryan and 

Chopra 2004). Figure 12 shows the optimal 

values of normalized friction that minimize the 

84th and 16th percentiles of the normalized pier 

response for the different values of   pT , dT  = 

2s (Fig. 12a,b,c), dT  = 4s (Fig. 12d,e,f) and for 

the three soil conditions. The trend is similar to 

the case of the 50th percentile. Regression 

expressions as statistics equations (Garzillo et al. 

2015), (Golzio et al. 2013) to estimate the optimal 

friction coefficient may be found in (Castaldo et 

al. 2018c). 



 

6 CONCLUSIONS 

This paper describes the seismic performance 

of elastic bridge pier equipped with friction 

pendulum system (FPS) bearings in order to 

define the optimal isolator friction properties as a 

function of the structural properties and of the 

soil characteristics in terms of frequency content, 

corresponding to stiff, medium and soft soils, 

respectively. Assuming an equivalent two-degree-

of-freedom model, representative, respectively, of 

the dynamic behaviour of a single-column bent 

viaduct, describing a continuous and infinitely 

rigid deck with an elastic pier, and the velocity-

dependent FPS isolator behaviour, a non-

dimensionalization of the motion equations is 

herein proposed. For each soil type, the 

uncertainty in the seismic inputs is taken into 

account by means of a set of 100 artificial non-

stationary stochastic records, obtained through 

the power spectral density method, with different 

frequency content. By means of the proposed 

non-dimensionalization, a wide parametric 

analysis is developed for several isolator and pier 

properties, and for different soil conditions, by 

monitoring the response parameters of interest. 

With reference to the deck response, the 

geometric mean of the normalized deck 

displacement increases slightly for increasing 

isolation period because of period elongation and 

it decreases significantly as normalized friction 

increases while it is not heavily influenced by the 

mass ratio. The dispersion for high isolation 

period increases for increasing values of 

normalized friction. The mass ratio does not 

affect significantly the response dispersion, 

especially for high pier periods. There are 

resonance effects for soft soil condition and low 

normalized friction values, and for stiff soil 

condition and high normalized friction values, 

particularly, for higher values of the pier period. 

With reference to the pier response, the 

geometric mean of the normalized displacement 

decreases for increasing values of isolation period 

and of mass ratio as well as for decreasing values 

of pier period, whereas it first decreases and then 

increases for increasing values of normalized 

friction. Thus, there exists an optimal value of 

normalized friction coefficient such that the pier 

displacement is minimized for each soil 

condition. This optimal value varies in the range 

between 0.1 and 0.3 depending on the system 

parameters and the soil type. The values of the 

dispersion are generally very low. The other 

system parameters have a reduced influence on 

the dispersion compared to the influence of the 

normalized friction. There are resonance effects 

for the stiff soil condition with increasing 

normalized friction values, particularly, for higher 

values of pier period and lower isolation period 

values. 
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