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ABSTRACT  

The use of fluid viscous dampers (FVDs) together with isolators is effective in reducing isolators’ displacement while 

keeping low isolation stiffnesses: therefore, such a hybrid system is suitable for buildings with inter-storey isolation 

in order to limit P-Δ effects. However, previous studies regarding base isolation showed that the additional damping 

may also be detrimental, as it may increase inter-storey drifts and floor accelerations. Although the main effects of 

additional damping on base-isolated buildings are clear, the results obtained in previous studies are not always easy 

to compare as they are strongly influenced by initial hypotheses (e.g. damper features); in addition, the use of FVDs 

in buildings isolated at storey level has its own peculiarities, and the effectiveness of FVDs for the improved seismic 

performance of such structures has been investigated only recently.  

First, this paper presents the main results of a recent study on the effectiveness of FVDs optimally designed for an 

inter-storey isolated building (case study); in this research, the FVDs are individually optimized for each 

accelerogram analysed by evaluating two competing objectives, i.e., the minimisation of both the isolators deflection 

and the superstructure total drift. Subsequently, as the optimal linearity degree of the FVDs proved to be strongly 

dependent on seismic input, making the design choice difficult, a more suitable multi-objective optimal design 

approach is proposed and applied to the same case study, which involves the use of surrogate response models. 

  

1 INTRODUCTION 

In the last few years, inter-storey isolation is 
becoming increasingly attractive for the seismic 
risk mitigation of both new and existing buildings, 
particularly in densely populated areas, also as 
alternative strategy to base isolation. As the name 
suggests, this technique consists of inserting the 
isolation layer between the storeys rather than at 
the base of structure. The reasons for applying this 
technique can be various and of different nature, 
such as: architectural concerns, feasibility of 
construction, and performance benefits. 

Inter-storey isolation can greatly increase 
design flexibility in high-rise and multipurpose 
buildings, by separating them into two 
independent structural parts which can be designed 
with different shapes, materials and functions 
(Zhang et al. 2016, Liu et al. 2018); this represents 
both an advantage for architectural design and an 
important sustainable solution for densely 
populated areas (such as the main cities of the 
People's Republic of China), as it allows to realize, 

for example, residential buildings on the top of 
large commercial buildings, with a considerable 
saving on land use. 

In addition, although base isolation for multi-
storey buildings is a well-known technique applied 
worldwide, it may sometimes encounter 
substantial economic and technical issues, which 
may limit its application. Firstly, installing base 
isolation is straightforward for new buildings, but 
becomes complicated and expensive for existing 
ones, since excavation and temporary support 
works are required. Instead, the installation of 
inter-storey isolation is relatively simple and 
generally less expensive and disruption-free; it 
may also allow extra storeys to be constructed on 
the top of existing buildings (if the vertical 
capacity allows this) without increasing the base 
shear forces, representing an innovative and 
realistic retrofitting approach (Chey et al. 2013, 
Zhou 2001). Secondly, base isolation is not as 
effective as inter-storey isolation for 
medium/high-rise buildings, because of the 



 

flexibility and bending-type behaviour of such 
structures (Ziyaeifar et al. 1998). Lastly, moving 
the isolation layer to the upper storeys reduces the 
need for a seismic gap, which is necessary to 
accommodate the expected isolation displacement, 
but also expensive and sometimes impractical in 
densely-built urban areas. 

This isolation strategy substantially converts 
the masses above the isolation layer into tuned 
masses, retaining their structural functions in 
addition to the control function; in other words, the 
principle of operation may be appropriately 
described as a nonconventional tuned mass 
damper (TMD) with a large mass ratio (Reggio et 
al. 2015). 

Examples of this application to irregular high-
rise buildings are the Iidabashi First Building 
(Zhang et al. 2016) and the Shiodome Sumitomo 
Building (Tasaka et al. 2008) in Japan, two 
multipurpose buildings having substructure and 
superstructure with different structural shape. In 
China, this technique was used to isolate 50 
buildings (seven- or nine-storey RC frames) in 
Beijing, built on top of a two-storey platform 
covering a very large (∼3 km2) railway area (Zhou 
et al. 2004). Built relatively recently, in the 
National Taiwan University campus, the Civil 
Engineering Research Building is a nine-storey 
pre-cast RC structure with an inter-storey isolation 
system installed between the second and third 
floors, which also includes viscous dampers (Loh 
et al. 2013). 

Although the importance of the subject is now 
fully recognized, the limited studies available on 
this topic, as well as the limited dissertation of this 
matter inside the seismic codes, limit the spread of 
this seismic mitigation strategy. 

One of the main issues related to this innovative 
application, for which systematic studies are still 
missing, is the need of reducing the seismic drift 
between the structural parts separated by the 
isolation layer (superstructure and substructure), 
which is responsible for high stresses in the 
substructure. However, the main function of 
seismic isolation is to allow the isolated 
superstructure to move significantly, in order to 
ensure its good seismic performance (small floor 
accelerations and inter-storey drifts). Therefore, 
this requires careful optimization studies. 

For this purpose, the use of supplemental 
dampers together with isolators (solution often 
adopted for base-isolated structures built near 
some active faults, is effective in reducing 
deflection of isolation layer. In this regard, many 
numerical studies were carried out to evaluate the 
effects of additional damping, provided by fluid 
viscous dampers (FVDs), in the case of base 

isolation (Kelly 1999, Hall 1999, Providakis 2008, 
Fathi et al. 2015), and this research showed that 
this additional damping may also be detrimental, 
as inter-storey drifts and floor accelerations of the 
isolated structure may increase. However, the 
results are not always easy to compare, as they are 
strongly influenced by initial hypotheses (such as 
the FVD features); moreover, the use of FVDs in 
buildings isolated at storey level, rather than at the 
base, has its own peculiarities, and its 
effectiveness has been investigated only recently 
for a case study (Liu et al. 2018). Therefore, 
further research studies are needed to evaluate the 
effects of additional damping on the isolated 
superstructure, analysing a wide range of FVDs 
(various linearity degrees) and structural 
configurations. 

In addition, suitable procedures for optimizing 
the FVD parameters (i.e., damping coefficient c 
and exponent α) are necessary to support the 
design phase. 

First, this paper presents the main results of a 
recent research (Liu et al. 2018) about the 
effectiveness of optimal FVDs in improving the 
seismic response of a seven-floor building with 
natural and lead rubber bearings (NRBs and 
LRBs) placed between the second and third levels. 
In particular, in this case study, a direct multi-
objective optimization procedure is implemented, 
which uses the NSGA-II genetic algorithm to 
individually optimize the FVD parameters for each 
earthquake analysed; what emerges from this 
study is that, in general, the linearity degree of 
FVD (α) is strongly dependent on the non-linear 
response of the structure and therefore on the 
specific accelerogram, making this approach not 
appropriate for design purposes (as it is not 
possible to average the α values). Therefore, a 
different approach for the multi-objective optimal 
design of the FVDs is subsequently proposed and 
applied to the same case study, and the results 
compared with those of the previous direct 
method. This new approach involves the use of 
surrogate response models and proved to be more 
effective for design purposes. 

2 CASE STUDY 

2.1 Building model and dynamic solution 

The building model examined in Liu et al. 
(2018) is shown in Figure 1a. It includes a two-
floor substructure and a five-floor superstructure 
elevated above the storey-isolation system. 

The isolated superstructure (including the 
isolation system) is very similar to an existing 



 

base-isolated office building with an RC frame 
structure, whereas the substructure is ideal and was 
chosen, for the purposes of the study, with a 
different structural solution, as shown in Table 1. 
Indeed, the substructure masses are similar to 
those of the upper storeys, whereas the storey 
lateral stiffness of substructure is about three times 
higher than that of the first superstructure storey, 
and this represents the case of a lightweight 
substructure with a floor extension larger than that 
of the superstructure. Such irregular building, with 
an office or residential multi-storey RC building 
constructed over a wider commercial building of 
different material, is increasingly common in 
highly populated residential areas (as in China).  

The elastic (k) and post-elastic (rk)  stiffnesses 
of the isolation system, realized with LRBs and 
NRBs, are reported in Table 1 (post-elastic 
stiffness ratio r is 0.141, see also Liu et al. 2018). 

 
 

 
a) 

 
b) 

Figure 1. (a) Seven-storey building model with storey 
isolation; (b) modal shapes with post-elastic (rk)  stiffness. 

A generic FVD is then added to the isolation 
layer, the parameters of which are calculated in the 
next section, to obtain optimal design solutions. 

Table 2 (left) and Figure 1b provide the main 

modal results, i.e. respectively, modal frequencies, 

periods and contributions, and modal shapes. 

The dynamic equation governing the motion of 

such a building model for each time instant t is: 

is vd g( ) ( ) ( ) F ( ) F ( ) u ( )t t t t t t     
st st is vd

Mx C x K x r r MI  (1) 

( ),  ( ), ( )t t tx x x , expressed as  
T

1 2 7x ( ) x ( ) ... x ( )t t t  

and so on, are the vectors of the relative storey 

displacement, velocity and acceleration, with 

respect to the base of the building and represent the 

output of the dynamic equation. gu ( )t is the 

acceleration time series of ground motion, and I  

represents the unitary rigid displacement vector of 

the structure in the earthquake direction (i.e., 

identity vector in this case study). M, Cst and Kst 

are the matrices of mass, damping and stiffness of 

the building; in particular, Cst and Kst do not 

include the isolation layer and thus have the form: 

[2x2] [2x2]
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l and u indicate the building lower and upper parts. 

 Kl and Ku are directly obtained from the 

stiffness values of Table 1, whereas Cl and Cu are 

derived as in Equations 3 and 4, according to the 

Rayleigh and stiffness-proportional models, 

respectively.   
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Table 1. Stiffnesses and masses of building model. 

Storey 

(inter-storey height: hf=3.7m, his=1.3m) 

1st 2nd 3rd 

Elastic       Post-Elastic 
4th 5th 6th 7th 

Stiffness (kN/mm) 1330 1140 k=118.4 rk=16.7 380 300 300 250 

Mass (tons) 850 850 960 830 800 800 500 

 

Table 2. Results of modal analysis (post-elastic isolation stiffness) and structural damping ratios ζi (Equation 5). 

Mode 

 Angular 

frequency 
ω [rad/s] 

Vibration 

period 
T [s] 

Modal 

contribution 
[%] 

 ζl,i due to 

substructure 
[%] 

ζu,i due to 

superstructure 
[%] 

ζTot,i due to total structure 

(without LRBs and FVD) 
[%] 

1  2.0 3.14 70.6  0.01 0.02 0.03 
2  12.8 0.49 0.1  0.01 2.59 2.59 
3  24.0 0.26 8.6  1.55 3.49 5.03 
4  24.3 0.26 18.5  3.40 1.54 4.94 
5  32.2 0.20 0.0  0.00 6.75 6.75 
6  37.2 0.17 0.0  0.00 7.80 7.80 
7  60.7 0.10 2.1  5.00 0.00 5.00 



 

 
Indeed, for this type of structures, a non-

classical global damping model should be used 
(Ryan and Polanco 2008, Pant et al. 2013). 

Rayleigh coefficients αl and βl were calibrated 
by associating a damping ratio ζ of 5% to the third 
and seventh mode frequencies (see Table 2), which 
define the significant vibrational range of the 
substructure. As regards βu, a ζ of 5% was 
associated to ω3, which is the first significant mode 
of superstructure; this leads to a slightly smaller 
damping with respect to the suggestion of Pant et 
al. (2013) of using, for base isolated buildings, 
ζ=1% at ω1 (obtained with the post-elastic 
isolation stiffness). This is preferable considering 
that the stiffness-proportional damping model 
tends to suppress higher mode effects, which are 
more important in the case of storey isolation.  

To verify the goodness of these choices, Table 
2 (right) lists modal damping ratios ζi due to the 
substructure [Cl], superstructure [Cu] and global 
structure [Cst] without isolation system, calculated 
according to Equation 5 for classical damping 
(where φi and ωi are the mode shape and angular 
frequency of mode i, respectively), thus neglecting 
the off-diagonal coupling terms (negligible) of the 
damping matrix expressed in modal coordinates. ζi 
is about 5% for the main higher modes, whereas it 
is negligible (as expected) for the first mode, as 
well as the related structural deformation 
compared with that of the isolation layer. 
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i i
i T
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The contribution of the isolation layer is 
described by the last two addenda of Equation 1. 
The force of the isolation system Fis(t) is predicted 
with the Bouc-Wen model (Ismail et al. 2009): 

isF ( ) ( ) (1 ) ( )yt rkx t r kd z t    (6) 

r and k are specified above (Table 1); dy is the 
yielding displacement of the LRBs, equal to 7.8 
mm in this case study. z(t) is a function which 
defines the hysteretic behaviour, and satisfy the 
non-linear first-order differential equation below:  

1( ) ( ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ) / yz t Ax t x t z t z t x t z t d      (7) 

A, β, γ and η are non-dimensional parameters 
influencing the hysteretic loop shape (Ikhouane et 
al. 2007). In this case study, A=β=γ=1 and η=2 (for 
further information, see Liu et al. 2018). 

The FVD force Fvd(t) is calculated as:  

vdF ( ) | | sgn( )t c x x   (8) 

where c and α are the damping coefficient and 
exponent, respectively. 

Lastly, ris and rvd are the vectors needed to 
correctly place the contributions of isolators and 
damper in the matrix equation of motion:  

 0 1 1 0 0 0 0
T

  is vdr r  (9) 

By introducing the state space vector q(t), 
Equation 1 can be solved as a first-order 
differential equation in state space:   
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 = 0
Τ

B 0 I  (12) 

In Equation 11, K is the stiffness matrix 

including the post-elastic stiffness of isolators: 

( )rk st isK K r  (13) 

2.2 Natural records analysed 

Eight natural records (see Table 3) were chosen 
from PEER database and, for purposes of 
comparison, were scaled to the same PGA of 
0.25g. Figure 2 shows the acceleration spectra of 
these scaled earthquakes. 

Table 3. Natural earthquakes analysed (PEER database). 

Earthquake Location Date Mw Distance [km] 

Big Bear California 92/06/28 6.5 45 

Superstition Hills California 87/11/24 6.2 18 

Duzce Turkey 99/11/12 7.1 26 

North Palm Springs California 86/07/08 6.1 42 

San Fernando California 71/02/09 6.6 23 

Chi-Chi Taiwan 99/09/20 6.3 84 

Imperial Valley California 79/10/15 6.5 22 

Irpinia Italy 80/11/23 6.9 10 

 

 
Figure 2. Acceleration spectra of scaled natural records. 



 

3 MULTI-OBJECTIVE FVD OPTIMIZATION 

3.1 Objective functions 

The main function of a damper mounted in an 
inter-storey isolation system is the reduction of the 
isolators deflection, and thus of the P-Δ effects on 
the substructure. However, as shown in the 
scientific literature, extra damping may increase 
the inter-storey drifts and the internal forces in the 
isolated structure. Therefore, this optimal design 
aimed at combining the two following competing 
objective functions (OFs) simultaneously: 

• minimisation of the relative displacement 
of isolation layer OF1; 

• minimisation of the total drift of 
superstructure OF2. 

A limit OF2,max was assumed for the maximum 
total drift of superstructure, corresponding to the 
maximum value reached in the case without FVD. 
OFs and constraint are shown in Equations 14: 

3 2

sup 7 3 ,max sup

min min x ( ) - x ( )

min min x ( ) - x ( ) ;   

D

1 iso

D

2 2

OF d t t

OF d t t OF d

 

  

 (14) 

where diso and dsup are the total drift of isolators 
and superstructure, respectively, without (-) or 
with (D) damper. 

In order to obtain a wider range of optimal 
FVDs, for a more comprehensive assessment of 
the additional damping, other important structural 
performance parameters, as storey accelerations 
and base shear, were only verified as an output of 
the optimization problem.  

In addition to the technical effectiveness, 
technical feasibility (e.g., maximum deformation 
of isolation units) and costs must also be 
evaluated; however, these aspects can be easily 
verified subsequently for the optimal FVDs 
obtained, as a wider range of optimal solutions is 
preferable compared with a few solutions 
optimizing many objective functions. 

The optimal values of the FVD parameters were 
sought within the following ranges:  

• α: form 0.1 to 1.0; 
• c: from 1.0 to 107 N(s/m)α. 

3.2 Genetic algorithm NSGA-II 

The presence of multiple goals in solving a 
generic problem means that a set of optimal 
solutions (known as optimal Pareto front) must be 
obtained, instead of just one optimal solution.  

In general, without specific information, none 
of these solutions can be considered better than 
another one, and this requires the determination of 
all possible Pareto-optimal solutions.  

To date, many multi-objective evolutionary 
algorithms are available and effective in 
determining these multiple solutions in a single 
simulation run. 

Among these algorithms, the fast and élitist 
Non-dominated Sorting Genetic Algorithm 
NSGA-II (Deb et al. 2002) has been widely used 
in practical optimization problems, and it was also 
chosen for the present study. 

The principal parameters set for the application 
of the NSGA-II algorithm are reported in Table 4; 
for further details, please refer to Liu et al. (2018).  

Table 4. Parameters for the NSGA-II algorithm 

Parameter Value 

Number of generations 100 

Population size 80 

Crossover probability 0.9 

Mutation probability 0.1 

3.3 Direct optimization procedure 

The direct optimization procedure, which is 
conceptually the simplest one, consists of applying 
the optimization algorithm directly to the 
structural response for each single accelerogram 
analysed. 

In particular, time-history dynamic analyses 
(THAs) of the storey-isolated building were 
carried out in MATLAB, with a custom-made 
code, numerically integrating the first-order 
differential equation of Equation 10 through the 
explicit Runge-Kutta method.  

This code is iteratively called by the 
optimization algorithm, which is also implemented 
in a MATLAB code, in order to find the Pareto-
optimal solutions. For the candidate solutions (c-
α), the optimization code prepares the set of FVDs 
to be evaluated in the dynamic analysis program; 
then, the latter computes the corresponding time-
history responses and the values of dD

iso and dD
sup 

used in the OFs; finally, these values are sent to the 
optimization code in order to determine the new 
candidate optimal solutions (c-α). 

An example of the iterations of the optimization 
algorithm is shown in Figure 3. The improvement 
in the solutions is faster for the first generations 
than for the later ones, where the populations are 
closer to the optimal Pareto front. 

 

   
Figure 3. Evolution of the Pareto front for Superstition Hills. 



 

Table 5. FVD parameters (c, α) and isolators drift ratio 

between the cases with and without FVD (OF1,min/diso), for 

the optimal solution OF1,min. 

Earthquake 
diso 

[mm] 
α 

[-] 
c 

[N(s/m)α]·106 

1,min isoOF d

 

[-] 

Big Bear 133.8 0.999 5.095 0.40 

Superstition Hills 135.1 0.373 2.283 0.41 

Duzce 100.2 0.742 4.028 0.46 

North Palm Springs 147.0 0.999 6.560 0.48 

San Fernando 88.5 0.718 1.717 0.59 

Chi-Chi 122.1 0.100 0.606 0.62 

Imperial Valley 130.7 1.000 4.380 0.63 

Irpinia 132.8 0.100 0.435 0.71 

 
The overall optimization results, for each 

earthquake analysed, are reported and commented 
in the subsequent Section 3.5. 

Only for the optimal solution corresponding to 
the lowest value of OF1, i.e. OF1,min, which 
minimizes the drift of the isolation system, Table 
5 reports the optimal FVD parameters and the 
associated drift value of the isolators, normalized 
to the case without FVD, for all earthquakes. 

Globally, the reduction in isolation drift 
achievable in this case study ranges from 30% 
(Irpinia) to 60% (Big Bear) compared to the case 
without additional damping, which demonstrates 
the FVD effectiveness for these applications. 
However, these optimal solutions refer to α values 
(linearity degrees of FVD) that differ greatly 
depending on the specific earthquake analysed.  

Indeed, as discussed in detail in Liu et al. 
(2018), the α parameter is strongly influenced by 
the non-linear seismic response of the structure 
and, therefore, could depend on the seismic input. 

Such a result makes this optimization procedure 
clearly inappropriate for design purposes, as the α 
values (if very different from each other) cannot be 
averaged. 

3.4 Optimization procedure based on surrogate 

response models 

In order to overcome the previous issue, a more 
convenient approach for design purposes consists 
of applying the optimization algorithm NSGA-II 
to surrogate response models, rather than directly 
to the structural response for each accelerogram. 

The surrogate response models consist of 
analytical functions of c and α (FVD parameters) 
that predict the average response of various 
structural performance parameters (and thus OF1, 
OF2, …). 

In order to derive these surrogate response 
models, parametric time-history analyses should 
be carried out evaluating an appropriate number of 
c-α combinations within their ranges of interest.  

For each structural performance parameter, the 
maximum values associated with the various 
accelerograms can be averaged if the number of 
accelerograms is code-compliant. Then, the peak 
response surface of that parameter can be obtained 
by plotting and interpolating its averaged 
maximum response versus the FVD parameters (c-
α plane). Finally, an appropriate model (generally 
polynomial, the degree of which should be 
evaluated case by case) can be calibrated on this 
peak response surface, and it represents the 
surrogate response model for that performance 
parameter. 

Therefore, the use of the optimization algorithm 
with OFs defined on the basis of surrogate 
response models leads to obtaining overall optimal 
solutions instead of local optimal solutions, i.e., to 
a single Pareto front for all accelerograms 
analysed and hence to the average optimal FVD 
parameters for the structure analysed.  

In general, the output of the surrogate response 
model can be conveniently normalized to the 
maximum response value of the relevant 
parameter in the case without FVD, in order to 
more directly assess the effects of the additional 
FVD. 

Figure 4 shows the peak response surfaces of 
the following parameters: drift of isolation layer 
diso, total drift of superstructure dsup (=x7-x3), inter-
storey drift of the first storey x1 and absolute 
acceleration of the top storey 7x . These response 
surfaces, which allow to globally assess the effects 
of additional damping on the structural response, 
were obtained by linearly interpolating the peak 
responses associated with all analysed FVDs 
(indicated with black dots and corresponding to 
800 case studies in the range c-α of interest). 

In general, diso (Figure 4a) is more influenced 
by the damping coefficient (c) than the damping 
exponent (α), especially for high values of c; 
instead, dsup (Figure 4b) strongly depends on both 
the FVD parameters. This is explained by the fact 
that the reduction of the isolation drift is 
substantially controlled by the maximum force of 
the damper rather than by its nonlinearity degree, 
which instead greatly influences the superstructure 
response, amplifying the higher vibrational modes 
in a different way. Furthermore, the two response 
surfaces of diso and dsup show an opposite or 
conflicting trend, from which the need for a multi-
objective optimization procedure in order to 
design the best damper solutions. 

The trends of x1 and 7x  (Figures 4 c, d) are 
quite similar to that of dsup (Figure 4b), i.e. their 
value increases with the increase of c and the 
reduction of α, i.e. with the increase of the FVD 
force and rigidity. Therefore, as already stated, in 
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Figure 4. Peak response surfaces: (a) drift of isolation layer diso; (b) total drift of superstructure dsup; (c) inter-storey drift of 1st 
storey x1; (d) absolute acceleration of top storey

7x . 

 

 
a) 

 
b) 

Figure 5. Surrogate response models of diso (a) and dsup (b) normalized to the related maximum response without FVD. 

 

 
a) 

 
b) 

Figure 6. Optimal solutions: (a) values of the objective functions (OF) normalized to the case without FVD; (b) FVD parameters.  



 

 
order to obtain a wider range of optimal solutions, 
the values of these additional performance 
parameters were only verified as an output of the 
optimization problem (see Section 4.2). 

Figure 5 shows the surrogate response models 
for the parameters diso and dsup, normalized to the 
relevant maximum value obtained without 
implementing the FVD. These models, described 
by the 4-degree polynomial function of Equation 
15 and the coefficients of Table 6, allow a good fit 
(R2≈0.98) compared to the results of the numerical 
analyses (see Figure 5). 

Finally, the optimization results obtained by the 
simultaneously minimization of these surrogate 
response models are reported in Section 3.5, and 
compared with those obtained from the direct 
optimization procedure. 
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Table 6. Coefficients of the surrogate response models. 
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b1 0.8563 0.8642 
b2 0.3421 0.3819 
b3 -4.08E-7 4.40E-7 
b4 -0.2071 -2.1820 
b5 -4.69E-09 -1.39E-06 
b6 1.10E-13 6.35E-14 
b7 0.0468 5.4720 
b8 5.49E-08 2.03E-07 
b9 -2.07E-15 1.54E-13 
b10 -1.35E-20 -1.56E-20 
b11 0.0806 -3.5580 
b12 -2.93E-08 4.67E-07 
b13 -7.77E-16 -8.79E-14 
b14 7.44E-23 -1.98E-21 
b15 5.88E-28 7.68E-28 

3.5 Optimal responses and FVD parameters: 

comparison between the procedures 

Optimal Pareto fronts (in terms of OF1*-OF2*) 
and associated values of damper parameters (c-α) 
were therefore calculated with both the direct 
optimization procedure, for each earthquake, and 
the optimization procedure based on the response 
models. The main results are shown and compared 
in Figure 6. 

As can be seen in Figure 6a), for some 
earthquakes (i.e., Big Bear and Superstition Hills) 
supplemental damping can greatly reduce isolator 
deflection (with a reduction of up to 60% in this 
case study, OF1*≈0.4), while ensuring, at most, the 
same total drift of the superstructure. However, at 

other times, this reduction is much lower, 
indicating that extra damping may sometimes be 
effective only at the expense of an increase in 
superstructure drift.  

Then, as already anticipated, Figure 6b) clearly 
shows that the best performance of additional 
damping can be reached either by linear (α ≈ 1) or 
non-linear (α < 1) viscous dampers, depending on 
the specific accelerogram input. 

Finally, the optimization procedure based on 
response models results to be effective in 
determining the best design solutions for the 
FVDs, as it provides reasonable and intermediate 
values, with respect to the direct optimization 
procedure, both for the optimal Pareto fronts and 
for the associated FVD parameters. 

4 EFFECTIVENESS OF OPTIMAL FVDs IN 

IMPROVING SEISMIC RESPONSE   

4.1 Building behaviour minimising isolator 

drift: comparison between the procedures 

Although only the total drift of the isolation 
layer and superstructure were examined as OFs, 
other performance parameters should be checked, 
such as the storey accelerations and the inter-
storey drifts. For example, to prevent damage to 
valuable building contents during an earthquake, a 
maximum value of storey acceleration is generally 
assumed according to the type of content, typically 
about 0.2-0.3g. For some special contents, e.g. 
artworks or other unique objects, this value may be 
much lower: however, in this case, specific 
isolation systems directly applied to the contents 
are available (Donà 2015, Donà et al. 2017). 

Figures 7 a) and b) show, along the building 
height, the maximum inter-storey displacements 
and drift ratios (a), and the maximum absolute 
storey accelerations (b), comparing the cases 
without FVD (black line) and with FVD (red 
lines). For the latter case, the optimal damper 
solution for OF1,min, which minimize the deflection 
of the isolation system, was considered. In 
particular, the results from both the optimization 
procedures are shown (and for the direct 
procedure, for all the earthquakes analysed). 
Figures 7 c) and d) show the same parameters, but 
normalized to the corresponding values in the case 
without damper. 

These results confirm that additional damping 
may increase the maximum accelerations and 
drifts of the superstructure, but also show that this 
damping is beneficial, in general, for the 
substructure. 



 

 

  
a) b) c) d) 

Figure 7. Structural performance, along the building height, without FVD and with the optimal FVD solution for OF1,min, 
comparing the results of the two optimization procedures: (a) inter-storey displacements and drift ratios; (b) absolute 
accelerations; (c), (d) same of (a), (b), normalised to the case without FVD. 

 

 

  
a) b) 

Figure 8. Ratio between maximum storey accelerations, with and without FVD, for (a) substructure and (b) superstructure, versus 
the drift reduction of the isolation layer OF1* (=OF1/diso). Comparison between the optimization procedures. 

 

  
a) b) 

Figure 9. Ratio between maximum inter-storey drifts, with and without FVD, for (a) substructure and (b) superstructure, versus 
the drift reduction of the isolation layer OF1* (=OF1/diso). Comparison between the optimization procedures. 

 
 



 

 
In addition, Figure 7 further confirms the 

effectiveness of the optimization method based on 
response surfaces, providing an intermediate 
structural response with respect to those obtained 
by direct optimization for the various earthquakes. 

4.2 Structural performance for all optimal 

FVDs: comparison between the procedures  

Although the amplification obtained for the 
superstructure response in Figure 7 appears 
moderate, even in absolute terms, sometimes it 
may be not acceptable, due to specific design 
requirements. Since this amplification strongly 
depends on the amount of supplementary damping 
(which has the effect of locking the sliding gap 
offered by the isolation layer), it is interesting to 
evaluate its trend versus the FVD performance in 
terms of drift minimisation of the isolation layer 
(OF1*=OF1/diso), considering all the optimal 
solutions determined. 

Therefore, a comprehensive view of the trend 
of the ratio between maximum floor accelerations, 
with and without FVD, for both substructure and 
superstructure, is shown in Figure 8.  

Figure 9, instead, shows the trend of a similar 
ratio, but examining the maximum inter-storey 
drifts.  

As regards the substructure, both these ratios 
generally have values lower than 1, together with 
less influence on damper performance when 
compared with those of the superstructure. These 
trends indicate that, if a slightly smaller reduction 
in isolator drift is accepted, then the highest values 
of these ratios for the superstructure can 
effectively be reduced, if they are excessive or in 
the case of explicit design requirements, without 
significantly affecting the substructure response. 

 

 
Figure 10. Maximum FVD force versus the drift reduction of 
the isolation layer OF1*. Comparison between the 
optimization procedures. 

Figure 10 shows the trend of the maximum 
damper force, which increases more than linearly 
with decreasing isolator drift (OF1*). These results 
are significant and may affect the design choice, as 
they are closely related to the FVD cost. 

Lastly, Figures 8 to 10 also show the 

effectiveness of the optimization procedure based 

on response surfaces, providing intermediate 

results with respect to those obtained by direct 

optimization. 

5 CONCLUSIONS 

First, this paper presented the main results of a 
recent research (Liu et al. 2018) about the 
effectiveness of optimal FVDs in improving the 
seismic response of a seven-storey building 
isolated with natural and lead rubber bearings 
placed between the second and third levels. 

In this previous study, a direct multi-objective 
optimization procedure, which uses the NSGA-II 
genetic algorithm, is implemented to calculate the 
optimal values of the FVD parameters for each 
earthquake analysed. In particular, two competing 
objectives are simultaneously evaluated, i.e., the 
minimisation of the drift of the isolation layer and 
the minimisation of the superstructure total drift.  

Among the main results it emerges that the 
optimal linearity degree (α) of an FVD strongly 
depends on the non-linear structural response, and 
therefore on the specific seismic input analysed, 
making the direct optimization procedure not 
appropriate for design purposes, as it could 
provide very different α values for various 
earthquakes that cannot be averaged. 

Therefore, a different approach for the multi-
objective optimal design of the FVDs is proposed 
in this paper and applied to the same case study. 
This new approach consists in the simultaneous 
minimization of surrogate response models, which 
enter into the definition of the OFs. These 
analytical models, often polynomial, refer to 
specific structural performance parameters and 
predict their average peak response between the 
various accelerograms. 

The results obtained from both the optimization 
procedures are presented and compared. The main 
highlights are listed below.  

 Optimal FVDs allow an effective reduction 
of the relative displacement of the isolation 
layer (up to about 50%), while maintaining 
acceptable maximum values of inter-storey 
drift and storey acceleration of the 
superstructure. 



 

 The dynamic response of the substructure 
is generally improved with optimal FVDs, 
particularly for high additional damping 
values (the inter-storey drift of the first 
storey, thus the total base shear force, can 
be reduced by about 20%). 

 The maximum force developed by optimal 
FVDs increases more than linearly with 
decreasing isolator drift; this is an 
important aspect for choosing the best 
FVD, as this force affects the damper cost. 

 The optimization procedure based on the 
surrogate response models proved to be 
effective and more suitable for design 
purposes. 

Although these numerical results depend on the 
structural configuration of the case study, it is 
reasonable to believe that the potential shown by 
FVD systems, optimized to work together with an 
inter-storey isolation system, is a general result. 
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