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ABSTRACT  

The classic approach for computing seismic reliability of a structural system requires a seismic hazard curve and a 

fragility function and leads to the estimation of the failure probability of the investigated damage state. However, 

resulting failure probability is strongly related to the preliminary assumptions in both hazard and fragility analyses, 

and slight changes in the input model parameters may cause relevant variability of seismic reliability estimates. The 

present work formalizes a general approach to be followed when dealing with seismic reliability assessment of 

structural systems, aimed at taking into account the whole uncertainties of the input parameters within hazard and 

fragility models. In the proposed approach, probability of failure becomes in turn a random variable and therefore 

new indexes are introduced, namely Expected Failure Rate, Failure Rate Dispersion, Characteristic Failure Rate, 

Center of Seismic Reliability and Characteristic Seismic Reliability.

1 INTRODUCTION 

In seismic reliability analysis, it is of paramount 
importance to compute failure probability, that is 
the basic metric of structural safety, i.e. the 
probability to meet or exceed a target performance 
level or damage state (ISO 2015). However, 
failure probability estimates are strongly related to 
assumed models and input data at both hazard and 
fragility sides, since both the models themselves 
and their parameters are uncertain. This issue is 
mainly due to an incomplete knowledge of such 
processes (i.e., the so-called epistemic 
uncertainty). Quantifying the impact of 
uncertainties in seismic reliability and risk analysis 
is therefore an emerging challenge that researchers 
in earthquake engineering are asked to address, 
since a specific scientific literature is still scarce.  

Some uncertainty assessments were carried out 
in previous research works within the context of 
seismic hazard analysis, pointing out a clear 
distinction between aleatory and epistemic 
uncertainties (Bommer 2003; Rebez and Slejko 
2004; Gaspar-Escribano et al. 2015). In the current 
practice of Probabilistic Seismic Hazard Analysis 
(PSHA), one of the most widely adopted method 

for addressing hazard epistemic uncertainty is the 
so-called logic tree approach (Kularni et al. 1984), 
in which every node represents a potential source 
of epistemic uncertainty, and the corresponding 
outcoming branches represent the possible 
alternatives. Through the logic tree approach, it is 
possible to consider both the intra- and the inter-
model uncertainties, the former due to uncertainty 
in the model parameters, the latter for describing 
the uncertainty among models. Despite its wide 
adoption in PSHA (Field et al. 2014), the use of 
logic trees is often debated, due to potential 
drawbacks (Bommer and Scherbaum 2008).  

Some studies were also carried out in order to 
analyze the impact of finite element (FE) model 
selection and modelling simplifications (Most 
2011; Haukaas and Gardoni 2011; Castaldo et al. 
2018), record selection (Sousa et al. 2017; Zanini 
et al. 2017), and the impact of uncertainty in FE 
modelling parameters on the seismic fragility 
estimates (Padgett and DesRoches 2007; Choine et 
al. 2014).  

However, despite the growing attention on such 
topic, there is a substantial lack of a general 
approach to be conventionally followed in order to 
quantify the impact of uncertainties in seismic 
reliability analysis. As previously reported, 



 

epistemic uncertainties associated to both hazard 
and fragility were always separately considered in 
literature studies, without any indication on the 
prevailing source of randomness when assessing 
seismic reliability that considers both.  

For the abovementioned reasons, the present 
work illustrates, as main novelty element, a 
general approach for the seismic reliability 
assessment, able to investigate the uncertainty of 
𝜆𝑓  arising from epistemic uncertainties linked to 
both hazard and fragility models, based on the 
formalization of the dependence of 𝜆𝑓(𝚯)  on 
model parameters 𝚯 . The proposed general 
approach allows quantifying the degree of belief 
that the risk analyst has for a certain seismic 
reliability estimate, on the basis of the 
uncertainties’ levels existing in the assumption of 
both hazard and fragility model parameters. As a 
further novelty element, the paper proposes some 
new seismic reliability indexes, namely Expected 
Failure Rate, Failure Rate Dispersion, 
Characteristic Failure Rate, Center of Seismic 
Reliability and Characteristic Seismic Reliability, 
for communicating the failure rate uncertainty and 
using results of the uncertainty analysis for 
design/assessment purposes. 

 

2 UNCERTAINTIES IN THE 

COMPUTATION OF THE FAILURE 

RATE 

In this Section, an overview on the sources of 

uncertainty linked to both hazard and fragility 

assessment methods currently in use is  provided. 

In the Performance-Based Earthquake 

Engineering (PBEE) framework (Cornell and 

Krawinkler 2000), the occurrence of the main 

earthquakes at the construction site is commonly 

assumed to be a Homogenous Poisson Process 

(HPP). Under this hypothesis, and not considering 

damage accumulation on structures, the process of 

events causing the structural failure is also 

represented by an HPP, whose unique parameter, 

the failure rate 𝜆𝑓, can be used for computing the 

failure probability in any time interval. For this 

reason, the failure rate 𝜆𝑓  represents one of the 

most used risk indicators, mainly due to its 

simplicity and its unique dependence on the 

seismic hazard and on the structural behavior. It is 

computed as: 

 

𝜆𝑓 = ∫ 𝑃[𝑓|𝑖𝑚] ⋅ |𝑑𝜆𝑖𝑚|
𝑖𝑚

   (1) 

 

where 𝜆𝑖𝑚  is the hazard curve and represents 

the seismicity at a specific site, whereas the 

𝑃[𝑓|𝑖𝑚] is the fragility curve and it characterizes 

the probabilistic structural behavior of a structural 

system (probability of reach and exceed a specific 

damage level). Current state-of-the-art approaches 

for the computation of 𝜆𝑖𝑚  are based on PSHA 

(Cornell 1968; McHuire 1995), which associates 

to each ground motion intensity measure 𝐼𝑀 = 𝑖𝑚 

value, the corresponding annual rate of events 

exceeding 𝑖𝑚  at the site where the structure is 

located. The most widely adopted intensity 

measure 𝐼𝑀  is the peak ground acceleration 

(PGA), i.e. the spectral acceleration corresponding 

to a structural period equal to zero; however, for 

specific applications, spectral accelerations for 

other different structural period can be used. In Eq. 

(1) 𝜆𝑖𝑚 ,  |𝑑𝜆im|  can be easily obtained as the 

derivative of the hazard curve: 

 

|𝑑𝜆im| = −
𝑑𝜆im

𝑑(𝑖𝑚)
𝑑(𝑖𝑚)    (2) 

 

𝑃[𝑓|𝑖𝑚] represents the probability of reach and 

exceed a specific damage level, conditioned on a 

specific 𝑖𝑚 value. The fragility curve 𝑃[𝑓|𝑖𝑚] is 

strongly influenced by the type of analyzed 

structural system, and its calibration is commonly 

based on results carried out with a set of nonlinear 

dynamic analyses. Among all procedures proposed 

in literature for the calibration of 𝑃[𝑓|𝑖𝑚] 
parameters, the most used are the Incremental 

Dynamic Analysis (IDA, Vamvatsikos and 

Cornell 2004), the Cloud-Analysis (CA, Jalayer 

and Cornell 2003), and the Multi-Stripes Analysis 

(MSA, Baker 2015). 𝜆𝑓 computed with Eq. (1) is a 

point estimate of the failure rate, that derives from 

specific assumed parameters both in 𝜆𝑖𝑚  and in 

𝑃[𝑓|𝑖𝑚]. In this context, 𝜆𝑓 is thus function of a 

set of parameters 𝚯 contained in both the hazard 

(𝚯𝐻) and in the fragility curve (𝚯𝐹). When these 

model parameters 𝚯 = [𝚯𝐻; 𝚯𝐹]  are assumed to 

be random variables (RVs), the failure rate itself 

becomes a RV with unknown distribution and 

moments. 

2.1 Hazard curve uncertainties 

The hazard curve 𝜆𝑖𝑚 is commonly computed 

via the PSHA integral as: 

 

𝜆𝑖𝑚 = ∑ 𝜐𝑚𝑚𝑖𝑛,𝑖
∫ ∫ 𝑃[𝐼𝑀 >

𝑟𝑚𝑎𝑥,𝑖

𝑟𝑚𝑖𝑛,𝑖

𝑚𝑚𝑎𝑥,𝑖

𝑚𝑚𝑖𝑛,𝑖

𝑛𝑆𝑍
𝑖=1

𝑖𝑚|𝑚, 𝑟]𝑓𝑀𝑖
(𝑚)𝑓𝑅𝑖

(𝑟) 𝑑𝑚 𝑑𝑟   (3) 



 

 

where 𝜐𝑚𝑚𝑖𝑛,𝑖
 is the rate of occurrence of 

earthquakes greater than a suitable minimum 

magnitude 𝑚𝑚𝑖𝑛,𝑖 of the ith seismogenic zone (SZ), 

𝑓𝑀𝑖
(𝑚) is the magnitude distribution for the ith SZ 

and 𝑓𝑅𝑖
(𝑟) is the distribution of the source ith-to-

site distance. Finally, 𝑃[𝐼𝑀 > 𝑖𝑚|𝑚, 𝑟] represents 

the probability to exceed the value 𝑖𝑚 at the site of 

interest due to a seismic event with magnitude 𝑚 

occurring at a certain epicenter-to-site distance 𝑟. 

𝑃[𝐼𝑀 > 𝑖𝑚|𝑚, 𝑟]  is usually computed with a 

Ground Motion Prediction Equation (GMPE), 

which predicts the probability distribution of an 

IM of interest as a function of many input 

variables, like magnitude, source-to-site distance, 

soil type, faulting style. Model parameters to be 

treated as RVs can be found involved in the hazard 

computation, in all the above terms. When a 

truncated Gutenberg–Richter (G-R) occurrence 

law (Gutenberg and Richter 1944) is adopted for 

the ith SZ, the magnitude distribution 𝑓𝑀𝑖
(𝑚; 𝚯𝑀) 

depends on the parameters vector 𝚯𝑀 =
[𝑀𝑚𝑎𝑥,𝑖, 𝑀𝑚𝑖𝑛,𝑖, 𝐵𝑖] , where 𝑀𝑚𝑎𝑥,𝑖  and 𝑀𝑚𝑖𝑛,𝑖 

represent the magnitude interval of events that can 

occur in SZ, and 𝐵𝑖 represent the slope of the G-R 

relationship. Also 𝛶𝑀𝑚𝑖𝑛,𝑖
 of Eq. (3) can be 

considered as random and it is included among 

model parameters 𝚯𝑀  related to the G-R law. 

Similarly to 𝑓𝑀𝑖
(𝑚; 𝚯𝑀), also 𝑓𝑅𝑖

(𝑟; 𝚯𝑅) could be 

characterized by random parameters 𝚯𝑅, e.g. the 

fault length, in case that a linear source model is 

assumed, the fault diameter, for a circular SZ, or 

the fault depth. Finally, the term 𝑃[𝐼𝑀 >
𝑖𝑚|𝑚, 𝑟; 𝚯𝐺𝑀𝑃𝐸]  depends on the GMPE 

regression coefficients involved to compute the 

distribution parameters of the 𝑖𝑚 expected in the 

specific site. Usually 𝚯𝐺𝑀𝑃𝐸  includes a factor 

representing the soil type, the style of faulting, or 

other regression coefficients. Considering all the 

possible uncertainty sources involved in the hazard 

curve computation, Eq. (3) can be rewritten as: 

 

𝜆𝑖𝑚(𝚯H) = ∑ 𝛶𝑀𝑚𝑖𝑛,𝑖
∫ ∫ 𝑃[𝐼𝑀 >

𝑅𝑚𝑎𝑥,𝑖

𝑅𝑚𝑖𝑛,𝑖

𝑀𝑚𝑎𝑥,𝑖

𝑀𝑚𝑖𝑛,𝑖

𝑛𝑆𝑍
𝑖=1

𝑖𝑚|𝑚, 𝑟; 𝚯𝐺𝑀𝑃𝐸]𝑓𝑀𝑖
(𝑚; 𝚯𝑀)𝑓𝑅𝑖

(𝑟; 𝚯𝑅) 𝑑𝑚 𝑑𝑟   (4) 

 

Note the general form of this notation, which 

allows including also the epistemic uncertainty 

related to the adoption of different GMPEs or 

different earthquake occurrence models, by simply 

introducing a probability mass function weighting 

each possible alternative. In this way, the classical 

logic tree approach (Kulkarni et al. 1984) is 

included in the proposed formulation. 

 

 

2.2 Fragility curve uncertainties 

The fragility function 𝑃[𝑓|𝑖𝑚]  is usually 

derived from results of nonlinear dynamic analysis 

performed with specific structural software. 

Simulations are needed for obtaining a sample of 

structural responses for a given set of selected 

ground motions. Structural responses are usually 

quantified by setting an engineering demand 

parameter (EDP) of interest, i.e. a metric that can 

be used to estimate damage to structural (and/or 

non-structural) components. Common EDPs may 

be the inter-story drift, the pier-top displacement 

etc. Such data are further used to calibrate the 

relationship between the ground shaking level and 

the EDP of interest, i.e. the Probabilistic Seismic 

Demand Model (PSDM), able to capture non-

linear seismic behavior of a structural system for 

increasing ground shaking levels (Bazzurro et al. 

1998). Consequently, only an estimate of the 

fragility curve is obtained, since it is expected to 

change when varying the input ground motions 

sample. Several procedures can be found in 

literature for estimating the fragility parameters 

from structural analysis, among all the most 

adopted ones are the IM-based Incremental 

Dynamic Analysis (IDA) approach and the Cloud 

analysis approach. 

In the first case, a set of n IDA curves, are used 

for drawing a sample of n intensity measures 
[𝑖𝑚1, 𝑖𝑚2, . . . , 𝑖𝑚𝑛] , at which the structural 

response reaches a specific undesired threshold 

level 𝑒𝑑𝑝̅̅ ̅̅ ̅  of engineering demand parameter 

(EDP). Each 𝑖𝑚𝑖 can be seen as a realization of the 

random variable 𝐼𝑀𝑓 , i.e. of ground motion 

intensities that cause the reaching of the 

investigated structural damage level. Thus, the 

structural fragility can be computed as the 

probability of the RV 𝐼𝑀𝑓  to do not exceed the 

specific 𝑖𝑚 value. In the case that the RV 𝑙𝑛(𝐼𝑀𝑓) 

is normally distributed, as commonly assumed in 

most of PBEE applications and widely proved in 

literature (Ibarra and Krawinkler 2005), 𝜇𝑙𝑛(𝐼𝑀𝑓) 

and 𝜎𝑙𝑛(𝐼𝑀𝑓) represent respectively the mean and 

the standard deviation of 𝑙𝑛(𝐼𝑀𝑓)  distribution. 

When these two parameters are treated as RVs, the 

following equation for the structural fragility can 

be derived 



 

 

𝑃[𝑓|𝑖𝑚; 𝚯𝐹] = 𝑃⌊𝐼𝑀𝑓 ≤ 𝑖𝑚; 𝚯𝐹⌋ =

Φ [
𝑙𝑛(𝑖𝑚)−𝜇

𝑙𝑛(𝐼𝑀𝑓)

𝜎
𝑙𝑛(𝐼𝑀𝑓)

]   with 𝚯𝐹 = [Μ𝑙𝑛(𝐼𝑀𝑓), Σ𝑙𝑛(𝐼𝑀𝑓)]  

 (5) 

 

From a sample [𝑖𝑚1, 𝑖𝑚2, . . . , 𝑖𝑚𝑛] of n ground 

motion values, obtained with structural analysis, it 

is possible to derive a point estimate of Μ𝑙𝑛(𝐼𝑀𝑓) 

and Σ𝑙𝑛(𝐼𝑀𝑓) as: 

 

𝜇̂𝑙𝑛(𝐼𝑀𝑓) =
1

𝑛
∑ 𝑙𝑛(𝑖𝑚𝑖)

𝑛
𝑖=1      (6) 

 

𝜎̂𝑙𝑛(𝐼𝑀𝑓)
2 =

1

𝑛−1
∑ [𝑙𝑛(𝑖𝑚𝑖) − 𝜇̂𝑙𝑛(𝐼𝑀𝑓)]

2
𝑛
𝑖=1 (7) 

 

and thus, a point estimate 𝑃[𝑓|𝑖𝑚; 𝚯̂𝐹] of the 

fragility function 𝑃[𝑓|𝑖𝑚; 𝚯𝐹]: 
Furthermore, an approximated value for the 

variance of the mean 𝜇̂𝑙𝑛(𝐼𝑀𝑓)  and variance 

𝜎̂𝑙𝑛(𝐼𝑀𝑓)
2
 estimator, can be computed as: 

 

𝑉𝐴𝑅 [𝜇̂𝑙𝑛(𝐼𝑀𝑓)] ≈
𝜎̂

𝑙𝑛(𝐼𝑀𝑓)

2

𝑛
       (8) 

 

𝑉𝐴𝑅 [𝜎̂𝑙𝑛(𝐼𝑀𝑓)
2] ≈

2∙𝜎̂
𝑙𝑛(𝐼𝑀𝑓)

4

𝑛−1
    (9) 

 

Regarding the Cloud Analysis approach, 

similar considerations on the model parameters 

can be done. In this case, the fragility computation 

takes origin from a sample of n ground motions 

intensities [𝑖𝑚1, 𝑖𝑚2, . . . , 𝑖𝑚𝑛]  and the 

corresponding sample of structural responses 
[𝑒𝑑𝑝1, 𝑒𝑑𝑝2, . . . , 𝑒𝑑𝑝𝑛]. In this case, the fragility 

function assumes the following form [50]: 

 

𝑃[𝑓|𝑖𝑚] = 𝑃[𝐸𝐷𝑃 > 𝑒𝑑𝑝̅̅ ̅̅ ̅|𝑖𝑚] = 1 − 𝑃[𝐸𝐷𝑃 ≤

𝑒𝑑𝑝̅̅ ̅̅ ̅|𝑖𝑚] = 1 − Φ [
𝑙𝑛(𝑒𝑑𝑝̅̅ ̅̅ ̅̅ )−𝑙𝑛(𝑒𝑑𝑝)

𝛽
]  (10) 

 

In Eq. (10), 𝑒𝑑𝑝̅̅ ̅̅ ̅  is the median value of the 

assumed structural limit state, and 𝑒𝑑𝑝 represents 

the median estimate of the demand that can be 

computed with a ln-linear regression model as: 

 

𝑙𝑛(𝑒𝑑𝑝) = 𝑎1 + 𝑎2 ∙ 𝑙𝑛(𝑖𝑚)   (11) 

 

Finally, 𝛽  is the standard deviation of the 

demand conditioned on 𝑖𝑚 and can be estimated 

from the regression of the seismic demands as 

 

𝛽 = √∑ [𝑙𝑛(𝑒𝑑𝑝𝑖)−(𝑎+𝑏∙𝑙𝑛(𝑖𝑚𝑖))]
2𝑛

𝑖=𝑖

𝑛−2
   (12) 

 

Note that this model assumes a deterministic 

capacity, and consequently with a standard 

deviation equal to 0. When treating 𝑎1, 𝑎2 and 𝛽 

as RVs, the fragility itself becomes random and 

Eq. (13) can be rewritten as: 

 

𝑃[𝑓|𝑖𝑚; 𝚯𝐹] = 1 − Φ [
𝑙𝑛(𝑒𝑑𝑝̅̅ ̅̅ ̅̅ )−𝑙𝑛(𝑎1+𝑎2∙𝑙𝑛(𝑖𝑚))

𝛽
]                  

with 𝚯𝐹 = [𝐴1, 𝐴2, Β ]    (13) 

 

Parameters𝑎, 𝑏 and 𝛽 are commonly estimates 

from n couples of points [𝑙𝑛(𝑖𝑚𝑖), 𝑙𝑛(𝑒𝑑𝑝𝑖)] 
obtained from structural analysis, and thus it 

makes the structural fragility itself an estimate 

𝑃[𝑓|𝑖𝑚; 𝚯̂𝐹] . Finally, since the estimates of 

𝐴1, 𝐴2 and Β  are computed with a linear 

regression, the moments of these three estimators 

are known and are provided by the following 

equations: 

 

𝑉𝐴𝑅[𝑎̂1] ≈ (
1

𝑛
+

𝑚̂2

∑ [𝑙𝑜𝑔(𝑖𝑚𝑖)−𝑚̂]2𝑛
𝑖=1

) ∙ 𝛽̂2  (14) 

 

𝑉𝐴𝑅[𝑎̂2] ≈
𝛽̂2

∑ [𝑙𝑜𝑔(𝑖𝑚𝑖)−𝑚̂]2𝑛
𝑖=1

   (15) 

 

𝐶𝑂𝑉[𝑎̂1, 𝑎̂2] ≈
−𝑚̂∙𝛽̂2

∑ [𝑙𝑜𝑔(𝑖𝑚𝑖)−𝑚̂]2𝑛
𝑖=1

   (16) 

 

𝑉𝐴𝑅[𝛽̂2] ≈
2∙𝛽̂4

𝑛−2
     (17) 

 

where 𝑚̂ =
1

𝑛
∑ 𝑙𝑜𝑔(𝑖𝑚𝑖)

𝑛
𝑖=1 , i.e. the mean of 

the 𝑖𝑚𝑖 values of the records used for the structural 

analysis. 

 

3 PROPOSED NEW SEISMIC 

RELIABILITY INDEXES 

This Section formalizes the dependence of 

𝜆𝑓(𝚯)  on model parameters and illustrates the 

newly proposed seismic reliability indexes. As 

widely shown in the previous sections, the failure 

rate λ𝑓  is function of series of uncertain 

parameters that are involved in both the hazard and 

fragility computation. As a consequence, Eq. (1) 

can be re-written in a more general way, as: 

 



 

λ𝑓(𝚯) = ∫ 𝑃[𝑓|𝑖𝑚; 𝚯𝑭] ⋅ |𝑑λim; 𝚯𝑯|
𝑖𝑚

  (18) 

 

for highlighting the randomness of the failure 

rate itself, and its dependence on the two 

uncertainty sources.  

 

In the most general case, the expected value of 

the seismic failure rate 𝐸[λ𝑓(𝚯)]
𝐻𝐹

 is provided by 

the following equation: 

 

𝐸[λ𝑓(𝚯)]
𝐻𝐹

= ∫ λ𝑓(𝚯)𝑓(𝚯)𝑑𝚯 =

∫ {∫ 𝑃[𝑓|𝑖𝑚; 𝚯𝑭] ⋅ |𝑑λ𝑖𝑚; 𝚯𝑯|
𝑖𝑚

} 𝑓(𝚯)𝑑𝚯 (19) 

 

Since most of times 𝚯 is a vector composed by 

several parameters, and, its mathematical form of 

λ𝑖𝑚is not a-priori known, the computation of Eqs. 

(20-22) can be difficult in a close analytical way. 

For this reason, suitable simulation methods, as the 

Monte Carlo Simulation (MCS), are required. In 

this case, the result accuracy is important, and may 

be measured and checked, by setting a suitable 

threshold value for the coefficient of variation 

(C.O.V.) of the solution. This procedure allows 

obtaining an adequate number of λ𝑓.𝑖 samples, and 

thus drawing the (pdf) of the failure rate 𝑓𝛬𝑓
(𝜆𝑓), 

by fitting the samples with a suitable known 

function.  

The failure rate distribution 𝑓𝛬𝑓
(𝜆𝑓) represents 

the most complete information on the seismic 

reliability of a structural system, and starting from 

this, new seismic reliability indexes are defined in 

order to provide a clear and synthetic description 

of the seismic reliability and its accuracy. First, the 

Expected Failure Rate 𝜇𝛬𝑓
 representing the 

weighted average of the 𝛬𝑓 RV, can be derived as: 

 

𝜇𝛬𝑓
= 𝐸[𝛬𝑓] = ∫ 𝜆𝑓 ∙ 𝑓𝛬𝑓

(𝜆𝑓)𝑑𝜆𝑓   (20) 

 

Then Failure Rate Dispersion 𝛿𝛬𝑓
 can be 

computed as a measure of the degree of dispersion 

of the failure rate distribution, derived as the 

coefficient of variation of 𝛬𝑓 . This indicator is 

preferred to the common variance (or standard 

deviation) since the measure of variability is more 

meaningful if measured relative to the central 

value, and 𝜇𝛬𝑓
 is always positive: 

 

𝛿𝛬𝑓
=

𝜎𝛬𝑓

𝜇𝛬𝑓

=
√∫(𝜆𝑓−𝜇𝛬𝑓

)
2

∙𝑓𝛬𝑓
(𝜆𝑓)𝑑𝜆𝑓

∫ 𝜆𝑓∙𝑓𝛬𝑓
(𝜆𝑓)𝑑𝜆𝑓

   (21) 

 

Hence, in analogy with the philosophy of semi-

probabilistic structural safety approach, the 

Characteristic Failure Rate 𝜆𝑓,𝑘  is introduced as 

the failure rate value, whose probability of being 

exceeded is 5%, and computed as: 

 

𝜆𝑓,𝑘 = 𝐹𝛬𝑓

−1(0.95)     (22) 

 

where 𝐹𝛬𝑓

−1(0.95)  is the inverse of the 

cumulative density function CDF of the RV 𝛬𝑓. 

 

Finally, in order to allow a direct comparison 

with target structural safety values provided in the 

current technical codes for constructions, other 

two new seismic reliability indexes are introduced 

using the actual metric for reliability analysis, 

namely Center of Seismic Reliability 𝛽𝐸,𝜇,𝑡 and 

Characteristic Seismic Reliability 𝛽𝐸,𝑘,𝑡  indexes, 

computed respectively as follows: 

 

𝛽𝐸,𝜇,𝑡 = −Φ−1(1 − 𝑒
−𝜇𝛬𝑓

𝑡
)   (23) 

 

𝛽𝐸,𝑘,𝑡 = −Φ−1(1 − 𝑒−𝜆𝑓,𝑘𝑡)   (24) 

 

where t is the target time window of interest and 

the subscript “E” stands for “earthquake”. The 

final seismic safety check, that needs to be 

performed in order to confirm the seismic 

reliability of a structural system, can be expressed 

as: 

 

𝛽𝐸,𝑘,𝑡 ≥ 𝛽𝑡𝑎𝑟𝑔𝑒𝑡    (25) 

 

where target represents the target structural 

reliability to be fulfilled during the time window 

of interest. 
 

4 CASE-STUDY APPLICATION 

The proposed general approach has been 

applied to an existing single-span open-spandrel 

RC arch bridge located in the Vicenza district (lat. 

46.01, lon. 11.63), northeastern Italy. Five RC 

arches of 60 m span, 5.5 m arch rise and a 

transversal spacing of 3 m, each one with a 

rectangular section of 1 m height and 0.5 m width, 

characterize the bridge. RC arches are connected 

with RC arch transverse beams placed at the arches 

axes with a longitudinal spacing of 6 m, and a 



 

rectangular section of 0.3 m height and 0.6 m 

width. RC piers, with a square section of 0.3 m side 

and placed on each RC arch with a longitudinal 

spacing of 6 m, sustain the girder composed by a 

grillage of RC beams. In particular, longitudinal 

deck RC beams are characterized by a rectangular 

section of 0.5 m height and 0.3 m width, whereas 

transversal beams are realized with a rectangular 

section of 0.4 m height and 0.3 m width. The RC 

beam grillage supports a 0.2 m thickness RC slab 

constituting the roadway surface, and bounded 

with marble parapets. Figure 1 shows main 

geometrical features, i.e. elevation, and 

longitudinal and transversal sections of the 

analyzed RC arch bridge.  

 

 
Fig. 1: RC arch bridge: elevation, transversal and 

longitudinal sections. 

 

 
Fig. 2: Bridge site, adopted seismogenic source model 

and PSHA results. 

 

For the classic seismic reliability assessment, a 

PSHA and a seismic fragility analysis have been 

conducted. The seismogenic source zone model 

ZS9 detailed in Meletti et al. (2008) has been 

adopted, using Gutenberg-Richter (G-R) 

recurrence laws for each of the six SZs considered 

(i.e. SZs # 903, # 904, # 905, # 906, # 907 and # 

912). Main G-R parameters (i.e., mean annual rate 

of events with magnitude above the minimum 

magnitude value 𝜈𝑚𝑚𝑖𝑛,𝑖
, slope coefficient b, 

minimum magnitude value 𝑚𝑚𝑖𝑛  and maximum 

magnitude value 𝑚𝑚𝑎𝑥) as reported in Barani et al. 

(2009) with Gaussian distributions with C.O.V.s 

of 0.1 for all parameters except to 𝑚𝑚𝑖𝑛  with 

C.O.V. equal to 0.01. As regards the ground 

motion prediction equation (GMPE) model, the 

formulation proposed by Bindi et al. (2011) has 

been adopted, considering a type-B soil class (VS30 

= 360 – 800 m/s) on the basis of available 

information on the local stratigraphy. Figure 2 

maps the bridge site with respect to the six SZs 

considered, and the resulting seismic hazard curve, 

highlighting how SZs # 905 and # 906 mostly 

contribute to the hazard of the bridge site.  

Seismic fragility analysis has been conducted 

performing a set of non-linear time history 

analyses (NLTHAs) on a 3-D finite element (FE) 

model of the analyzed RC arch bridge. The 3-D FE 

model has been implemented in Seismostruct 

software platform (Seismosoft 2013) in order to 

properly characterize main structural features of 

the analyzed bridge for the following seismic 

reliability analysis purposes. In particular, frame 

elements (i.e. arches, piers and arch transverse 

beams) have been modelled using distributed 

plasticity fiber-section elements with force-based 

formulation, whereas deck RC grillage beams 

(both longitudinal and transversal) have been 

modelled as elastic elements. Deck RC grillage 

beams are connected through rigid links to the RC 

slab, which is realized with a rigid diaphragm 

constraint type. Figure 3 shows a 3-D view of the 

FE model of the RC arch bridge, with information 

on longitudinal reinforcement and stirrups in each 

structural element, discretization of fiber cross-

sections for non-linear RC elements, and adopted 

constitutive laws for unconfined and confined 

concrete and steel reinforcement bars.  

 

 
Fig. 3: RC arch bridge FE model, with adopted 

constitutive laws for unconfined - confined concrete and 

steel rebars. 

 

A set of 30 natural 3-D seismic records has been 

collected from the European Strong Motion 

Database (Luzi et al. 2016), and further used to 

execute the NLTHAs. NLTHAs have been 

subsequently run, extracting 3-D interstory drift 



 

ratios time histories, and thus deriving the 

maximum IDR value of the first external RC pier 

with 6 m height for each record. Cloud analysis 

method has been then used to derive the seismic 

fragility curves of the analyzed RC arch bridge, 

expressed in terms of horizontal PGA. Results 

derived from NLTHAs have been fitted in the bi-

logarithmic plane according to Eq. (11), thus 

deriving 𝑎̂1  and 𝑎̂2  coefficient of the ln-linear 

regression model and the standard deviation 𝛽̂2 

via Eq. (12), and equal to -3.979, 1.055 and 0.42, 

respectively. Four different damage states (i.e. 

Slight, Moderate, Extensive and Complete 

Damage) has been fixed considering IDR 

thresholds equal to 0.25%, 0.5%, 1% and 2% 

respectively, thus leading to derive four fragility 

curves computed with Eq. (10). Figure 4 shows the 

results of Cloud Analysis with NLTHA data 

points, the assumed IDR thresholds and resulting 

set of fragility curves.  

 

 

Fig. 4: Cloud analysis results and related analytical 

fragility curves. 

 

MCS technique has been then used to compute 

an adequate number of failure rate samples λ𝑓,𝑖 , 

setting an adequate and high accuracy level, 

ensured by the fulfilment of a C.O.V. of the 

solution smaller than to 2%. Figure 5 shows 

resulting hazard and fragility samples as well as 

the distribution of failure rates.  

Once the failure rate pdf 𝑓𝛬𝑓
(𝜆𝑓)  has been 

fitted, the last step consists in the computation of 

the new seismic reliability indexes, according to 

Eqs. (21-24). First, the Expected Failure Rate  𝜇𝛬𝑓
 

has been derived with value equal to 5.70E-05, 

slightly higher than the benchmark case 

represented by the point estimate 𝜆̂𝑓 = 4.89E-05. 

Failure Rate Dispersion 𝛿𝛬𝑓
 has been then 

computed, resulting in an estimate equal to 0.659. 

Hence, the Characteristic Failure Rate 𝜆𝑓,𝑘  (i.e. 

the failure rate value whose probability of being 

exceeded is 5%) has been calculated, leading to a 

value equal to 1.29E-04. It is worth noting how the 

ratio 𝜆𝑓,𝑘 / 𝜆̂𝑓  between the Characteristic Failure 

Rate 𝜆𝑓,𝑘  and the point estimate of the seismic 

failure rate derived with the classic approach 𝜆̂𝑓 is 

equal to 2.65, respectively, thus evidencing how in 

the specific case 𝜆𝑓,𝑘 has values larger than twice 

of the 𝜆̂𝑓 point estimate derived with the current 

classic seismic reliability assessment approach.  
 

 

Fig. 5: Failure rate samples λ𝑓,𝑖 obtained considering 

hazard and fragility uncertainties. 

 

On those bases, the final seismic reliability 

indexes Center of Seismic Reliability 𝛽𝐸,𝜇,𝑡  and 

Characteristic Seismic Reliability 𝛽𝐸,𝑘,𝑡 have been 

derived according to Eqs. (23-24), considering a 1-

year target time window, and resulting in 𝛽𝐸,𝜇,1 

values equal to 3.859 and 𝛽𝐸,𝑘,1  estimate of 3.654, 

respectively. Lastly, considering a yearly target 

structural reliability target,1 equal to 4.7 (European 

Committee for Standardization, 2002) for the 

Ultimate Limit State, the structural safety 

assessment carried out with Eq. (28) is not 

fulfilled, thus requiring further efforts in designing 

a seismic retrofit project for the analysed RC arch 

bridge structure.  
 

5 CONCLUSIONS 

The present work illustrated a novel general 

approach for the assessment of seismic reliability 

of structural systems able to account for 

underlying uncertainties in the definition of the 

input parameters of seismic hazard and fragility 

models. This study showed how the use of the 

classic approach for computing seismic reliability 

leads to a point estimate of the failure probability 



 

for a DS of interest, without knowledge of the level 

of uncertainty characterizing it. A set of new 

seismic reliability indexes was therefore defined, 

namely Expected Failure Rate, Failure Rate 

Dispersion, Characteristic Failure Rate, Center of 

Seismic Reliability and Characteristic Seismic 

Reliability. 
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