
 

 

 

 

XVIII CONVEGNO ANIDIS

ASCOLI  PI CENO 2 0 1 9
L’ i ngegner i a si smi ca i n I t al i a

15- 19  Set t embre

Preliminary study on the impact of time-dependent seismic hazard on design 

capacity 

Hamed Dabiria, Andrea Dall’Astab, Emanuele Tondic, Michele Moricib 

a School of Advanced Studies, University of Camerino, Camerino, Italy 
b School of Architecture and Design, University of Camerino, Ascoli Piceno, Italy  
c School of Science & Technologies, University of Camerino, Camerino, Italy  

 

 

 

 

 

 

Keywords:  Time-dependent Seismic hazard, mean annual frequency, system parameters, hazard parameters. 

ABSTRACT  

Recent works on seismic hazard have introduced the concept of time-dependent seismic hazard and different 

models have been proposed to predict the inter-arrival time between consecutive events. Currently, the reliability 

assessment of structures and relevant design rules proposed by the codes are based on the Poisson recursive model, 

for which the frequency of the occurrence of seismic events does not change in time. This paper presents some 

preliminary results on the impact of TDSH on structural design, by evaluating the strength required by the structure 

(seismic capacity) for different time intervals elapsed from the last event. “Seismic capacity” is understood here as 

the capacity required to provide a fixed reliability level, measured by the failure rate. 

 

1 INTRODUCTION  

Risk assessment basis on a prediction of 

possible hazardous events, in terms of recurrence 

in time, and is oriented to the estimation of 

potential consequences, considering potential 

sources of uncertainty. In this paper, attention is 

focused on the probability of construction failure 

(consequence) due  to a strong earthquake 

(event). 

Generally this type  of risk analysis is 

developed within the context of the PEER 

framework (Porter 2003, FIB 2012) where the 

seismic hazard assessment is based on a constant 

rate of occurrence in time, described by the 

Poisson recursive model, and involves  potential 

sources with different locations and different 

intensities. 

However, it is observed that small and medium 

magnitude events generally show different  

occurrence properties with respect to large 

magnitude events. The former generally occur as 

independent events, for which the recursive 

Poisson model is adequate, while the occurrence 

of the latter events is notably influenced by the 

previous history of the source activity. In this 

case, the earthquake sequence tends to show a 

periodic trend and the fault activity provides 

earthquakes with similar magnitudes, also 

denoted as characteristic earthquakes (Schwarz et 

al. 1984, Wesnousky et al. 1994, Kramer 1996; 

Tondi and Cello, 2003). 

From a theoretical point of view, approaches 

considering the recursive properties of strong 

events and models providing a time dependent 

prediction of the interarrival time passing 

between two events dates back to the 80s. An 

overview of different models and a proposal for 

their classification is presented in (Anagnos and 

Kiremidijan 1988). Only more recently have 

time-dependent models found practical 

applications thanks to the improvements in fault 

mechanism knowledge in some earthquake prone 

areas. Some studies, mainly limited to an 

assessment of the seismic hazard, have been 

proposed (Petersen et al. 2007, Akinci et al. 2009, 

Chan 2013, Jalalalhosseini 2017, Mousavi 2018). 

From a structural engineering perspective, it is 

of interest to evaluate the potential impacts of  

time dependent models describing the external 

actions, on the structural dimensioning and, more 

generally, on the design process. 



 

Regarding this, it is useful to recall that the 

final objective of structural engineering consists 

of bounding the probability of failure of 

constructions during their lifetime and some 

target values are  proposed in codes of practice, 

such as Eurocode 0 or ASCE 7 (Fajfar 2018, 

CEN 2006, ASCE 2017). This objective is 

generally obtained by simplified procedures that 

permit a full probabilistic analysis to be avoided 

and many recent works have been oriented to 

improving these methods in order to control the 

effective probability of failures (Fiorini et al. 

2014, Franchin et al. 2018, Gkimprixis et al. 

2019). 

This study presents some preliminary results 

on the impacts of a time dependent prediction of 

strong events on the structural capacity required 

to ensure a target failure rate is not exceeded. The 

required capacity varies as the time elapsed from 

the last event varies and the final result is 

influenced by either  uncertainties due to the 

propagation of the seismic wave or the response 

of the structural system. A simple case, 

considering an earthquake point-source, is studied 

and results obtained by using the time dependent 

Brownian Passage Model (Mattheus et al. 2002) 

are compared with results obtained with the  time 

independent Poisson model. The influence of site-

to-source distance as well as structural response 

dispersion are analyzed. It is noteworthy that a 

more realistic failure prediction generally  

involves more than one source of strong event 

and includes widespread sources with no 

recursive properties. These last two issues should 

mitigate the overall influence of recursive models 

on the variation in time of capacity required to 

ensure the target failure rate is not exceeded. 

Therefore, presented results should be considered 

as the upper bound of the potential impact of time 

dependent models on structural design. 

2 METHODOLOGY 

The earthquake is here considered as an event 

E  whose occurrence in time is described by  

( )Tf t  providing the probability density function 

of the time elapsed from the last event (inter-

arrival time). The origin 0t =  of the time axis is 

placed at the instant of occurrence of the last 

event. Different models have been proposed to 

describe the probabilistic distribution of inter-

arrival time in literature and a review can be 

found in (Anagnos and Kiremidjan, 1988). These 

models are generally based on the mean value of 

the inter-arrival time 
RT  and on one or more 

parameters describing the expected dispersion of 

the inter-arrival time. 

Starting from ( )Tf t and the relevant 

cumulative density function ( )TF t , it is possible 

to evaluate the hazard rate function ( )Th t  using 

the following expression: 

( )
( )

( )1

T

T

T

f t
h t

F t
=

−
 (1) 

This function provides the instantaneous 

probability of occurrence at the time t, given that 

no event had occurred previously, and describes 

the hazard variation in time.  

The probability of occurrence of one event  

within a time interval t (e.g. construction 

lifetime) starting at t  , given that the event had 

not occurred before, can be obtained by 

integrating the ratio ( ) ( )( )1T Tf t F t+ − .  In the 

case of time intervals notably shorter than 
RT , the 

likelihood connected to multiple events can be 

neglected and the occurrence of only one event 

can be considered as representative of the total 

probability of failure (Takahashi et al. 2004).. 

The system reliability can be measured by the 

failure rate ( ) ( )f T fp t h t P , expressing the 

instantaneous probability of failure at time t . It is 

obtained by combining the hazard rate function 

with the probability of failure 
fP  conditional to 

the event occurrence .  

Structural reliability requires that the failure 

rate be lower than a threshold *

fp   suggested by 

the codes and this paper focuses on the evaluation 

of the structural seismic capacity necessary to 

strictly satisfy the safety requirement ( ) *

f fp t p   

for different values of time elapsed from the last 

event. 

The failure rate  of the structural system, given 

the event occurred, depends on the system 

properties that can be collected in a vector   

of parameters describing dynamic properties and 

capacity limits, so it is possible to associate to 

each instant t the relevant set of system properties
* *    necessary to strictly satisfy the 

condition ( ) ( ) ( )* *

f f fp p t h t P =  . 

As a final result, the relationship *t   

between the time elapsed from the last event and 



 

the minimum capacity required to achieve a fixed 

safety level is presented and discussed in the 

numerical application. 

It should be noted that the recurrence models 

( )Tf t  proposed in literature are generally 

continuous and start from a probability density 

equal to 0 at the initial instant (in many models 

the function slope is also 0 at the initial instant), 

so previous equality can be evaluated only for 

t t  with ( ) *: ft h t p=  , i.e. when the 

instantaneous probability of occurrence of the 

event becomes larger than the acceptable failure 

rate, otherwise inequality also holds for 1fP = . 

This is not a marginal point because 1fP =  

means that no seismic capacity is required for an 

elapsed time shorter than 𝑡̅ and models proposed 

in the literature sometimes provide quite large 

values for time t . 

In this paper some preliminary results are 

presented concerning the case of strong recursive 

seismic events with magnitudes M  varying close 

to a reference value (characteristic earthquake),  

coming from a seismic point-source, placed at a 

distance r  from the site of interest. It is assumed 

that the random values of M  are described by a 

known probability density function ( )Mf m  

defined on the magnitude interval 
M . In this 

study it is assumed that the earthquake properties 

do not depend on the inter-arrival time and 

renewal models are consequently considered for 

( )Tf t . 

The seismic intensity at the site is a random 

variable denoted by I  and its probability density 

function ( )If i   can be determined on the basis of 

Ground Motion Prediction Equations (GMPE), 

providing the conditional probability density 

function ( ),If i M R . Generally, GMPEs are in 

the form ( ) ( )ln ( , ) 0,g gI g M R  = + , where 
g  

is a Gaussian random variable with 0-mean (Pinto 

et al, 2004). In the case considered the distance 

r r=  is fixed and random properties of the 

seismic intensity are obtained using Equation (2). 

( ) ( ) ( ),
M

I I Mf i f i m r f m dm


=   (2) 

The response properties of the structural 

system are described by using  the parameters 

providing the  fragility curve, in order to obtain 

results potentially of interest for different 

structural typologies. The fragility curve,

( ), ,CF i P failure i  =   , is described by using 

a log-normal cumulative density function 

(Kennedy and Short, 1994, Cornell et al. 2002), 

whose characteristic parameters are c  and  , 

 ,c = , the former is the intensity measure 

producing 50% of failure and the latter is the 

logarithmic standard deviation describing the 

dispersion of results. 

So, the conditional probability of failure can 

be obtained by the convolution integral given in 

Equation (3): 

( ) ( ) ( ),f C I
R

P F i f i di 
+

=   (3) 

3 CASE STUDY 

Results presented in the following concern the 

case of a point-source located at variable 

distances from the site of interest. The 

characteristic earthquake refers to the Paganica 

fault located in central Italy and relevant 

properties have been chosen according to (Pace et 

al 2006, Polidoro et al 2013). The return period is 

750yr  and it is assumed that magnitude M  

follows a truncated Gaussian distribution centred 

at 6.3m = and spanning the range  5.8,6.8 with a 

standard deviation 0.1667. 

Presented results compare outcomes deriving 

from a Poisson recursive model, providing a 

constant hazard rate, with results coming from a 

time dependent recursive model. The Poisson 

model is defined by Equation (4). 

( ) /1
Rt T

T

R

f t e
T

−=  (4) 

Only one parameter is necessary and it 

coincides with 750RT y= . In this case, the hazard 

rate defined in Equation (5) does not change in 

time and it is ( ) 0 0.00133Th t h= = . 

The distribution of the inter-arrival time of the 

time dependent hazard is described by the 

Brownian Passage Time model (Mattheus, 2002), 

based on rebound theory (Reid 1910) and often 

used in the description of characteristic 

earthquake recurrence (e.g. WG of California 

Earthquake Probabilities 1999, Takahashi et a 

2004, Polidoro et al 2013). Its expression is as 

follows: 
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This is a renewal model depending on two 

parameters, the mean inter-arrival time 

750RT yr=  and the parameter  ruling the 

aperiodicity, intended as the possible deviation 

from the reference return period RT . In this case 

study, the value 0.43 =  is assumed, according 

to the study on seismic scenario considered (Pace, 

2006). In this case the hazard rate varies in time 

and it can be evaluated from Equation (5). Trends 

of interarrival time probability density functions 

and hazard rates of the two models are reported in 

Figure 1. It can be observed that the time-

dependent model provides the same hazard rate as 

the Poisson model at the time 0 416t yr= . 

 
a 
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Figure 1 (a) Probability density functions of interarrival 
time and (b) hazard rates for the Poisson model and the 
Brownian Passage Time model.  

The seismic intensity is measured by the peak 

ground acceleration (PGA), obtained by the 

GMPE proposed in Equation (6) (Sabetta and 

Pugliese, 1996). The logarithm of the seismic 

intensity I  produced by an event with intensity 

m , at a distance r , can be evaluated by the 

Equation (6): 

( ) 2 2

10 10

1 1 2 2

log logI a bm c r h

e S e S 

= + − + +

+ + +
 (6) 

where   is a 0-mean Gaussian random 

variable. In this study the following values are 

assumed for the parameters: 1.562a = − , 

1.562a = − , 0.306b = , 1c = , 1 1S = , 1 0.169e = , 

2 0S = ,and 5.8h = . The standard deviation of   

is equal to 0.173. 

4 RESULTS AND DISCUSSIONS 

In this section the seismic capacity required to 

ensure a target failure rate equal to *

fp  is 

evaluated for different time intervals t  elapsing 

from the last event. 

The seismic capacity is described by the 

parameter ĉ , introduced in section 2, 

The target value of the failure rate is assumed 

equal to 56.667 10− . It is obtained  by combining 

the conditional probability of failure 0.05fP =   

with the reference value of the hazard rate 

0 0.00133h =  provided by the Poisson recursive 

model for the seismic scenario considered. 

The following results report numerical values 

referring to 3 special times [331yr, 416yr, 663yr]. 

The intermediate value is equal to the time 0t  

introduced in the previous section and 

corresponds to that instant in which the hazard 

rates provided by the time-independent Poisson 

model and the time-dependent BPT model are the 

same. The time-dependent hazard rate is half of 

0h  at the first time value, i.e. ( ) 0331 0.5Th yr h= , 

and it is two times 0h  at the third time value, i.e. 

( ) 0663 2.0Th yr h= . 

Finally, the variation of required capacity for t  

larger than the limit value t , such that 

( ) *

T fh t p= , is graphically reported. 

Two parametric analyses are separately 

developed in order to study results for source-to-

site distances r  varying from 5km to 20km, and 

capacity dispersion   varying from 0.5 to 0.8 

(FEMA P-750, ASCE 7-16). In the former 

analysis the site-to-source distance varies and 

capacity dispersions are fixed, in the latter the 

parameter   varies and results are evaluated at a 

fixed distance. 

 



 

4.1 The impact of site-to-source distance on the 

required capacity  

The effect of the distance on the required 

capacity is evaluated by changing site-to-source 

distance, r, from 5 km to 20 km in steps of 5 km 

(5, 10, 15 and 20 km) whilst parameter   

remained the same. 

Figure 2 permits a comparison between 

seismic demand and required capacity, given 

event occurred. The continuous line reports the 

complementary cumulative density function 

( )IG i  of seismic intensity I , describing the 

probability of exceedance of I . The dashed line 

reports the probability of failure for systems with 

different capacities, expressed by the seismic 

intensity c . As expected, the two curves intersect 

approximately when the median value of the 

expected seismic demand coincides with the 

capacity parameter c , while probability of failure 

is larger than the probability of intensity 

exceedance for rare events as a consequence of 

the capacity dispersion. 

Figure 2 also permits a comparison of results 

concerning different site-to-source distances. It is 

evident that the capacity corresponding to the 

target conditional probability of failure 
* 0.05fP =  decreases by increasing the site-to-

source distance. More precisely, the capacity 

necessary for *

fP  is 1.46c g=  for the smallest 

considered distance equal to 5km, and it 

decreases by 33%, 52%, and 62% passing from 

5km to the larger values 10km, 15km, and 20km, 

respectively. 

In the following, the influence of the time 

passed from the last event is considered. 

 

  
a b 

  
c d 

Figure 2. ( )G i
I

and ( )P c
f

 curves 416 years after the last events for β=0.6 and a) r=5 km, b) r=10 km, c) r=15 km and d) r=20 
km. 

Table 1 provides the data related to  the 

required capacity for the three special instants 

discussed previously, i.e. 331yr, 416yr, and 

633yr, and compares results obtained for the 4 

different site-to-source distances. As mentioned 

in section 4, the reference time is 416yr, in this 

case the hazard rates provided by the Poisson 

model and BPT model are the same. According to 

the data reported in Table 1, by elapsing time 

from the last event, required capacity, c , 



 

increases. However, the variation of the required 

capacity is notably smaller than the variation of 

event occurrence. In this regard, it is useful to 

recall that the hazard rate at 331yr is equal to 

00.50h , where 0h  is the reference hazard rate 

evaluated at 416yr, and the capacity reduction is 

approximately 0.22-0.23 for all the distances 

considered. On the other hand, the hazard rate at 

633yr is equal to 02.00h  but the required 

increment in the capacity parameter is limited to 

the range 0.24-0.26. So a strong variation in time 

of the hazard rate does not translate into a 

similarly strong variation in the capacity required 

for the structure. Based on the percentages of the 

differences provided in the last column of Table 

1, it can be observed that the rate of increase of c  

by elapsing time is approximately the same for 

different values of r . 

Table 1 Required capacity for the target failure rate, β=0.6, different distances and different times 

Site to source 

distance 

Median value of 

demand 

Elapsed time 

[yr] 
Required capacity c   

Variations from reference 

case 

r=5 km 0.450 g 

331 1.131 g -22% 

416 1.463 g 0% 

633 1.841 g 26% 

r=10 km 0.303 g 

331 0.750 g -23% 

416 0.977 g 0% 

633 1.223 g 25% 

r=15 km 0.232 g 

331 0.548 g -22% 

416 0.704 g 0% 

633 0.875 g 24% 

r=20 km 0.204 g 

331 0.423 g -23% 

416 0.551 g 0% 

633 0.688 g 25% 

 

For a deeper insight into the trend in time of 

the capacity required for the target failure rate, 

the values of c  obtained in the range 

 250 ,1400yr yr  are reported in Figure 3, for the 4 

distances previously considered. 

Based on the curves shown in Figure 3, it can 

be said that when the site is close to the source 

(r=5 km) elapsing time affects the structure 

response considerably more than the case in 

which the site is far from the source (r=20 km in 

this study). Values of c  change considerably up 

to 600yr , while variations decay for longer 

periods and become negligible for elapsed time 

over 1200yr . 

 
Figure 3 The change of required capacity by elapsing time 
for constant β=0.6 and variable r. 

Results concerning short time intervals are not 

reported because the capacity required for 

intervals shorter than the limit value t  is equal to 

0, as discussed in the previous section. In the case 

study considered, the time limit t  is equal to 

219yr . 

4.2 The impact of β on the required capacity  

The influence of parameter  , describing the 

dispersion of the seismic intensity producing 

failure, is analysed in this section considering a 

fixed site-to-source distance 5r km=  and variable 

values of   (0.5, 0.6, 0.7, and 0.8). 

As above, Figure 4 provides a comparison 

between seismic intensity and required capacity, 

given the earthquake  occurred. 

The continuous line reports the 

complementary cumulative density function 

( )IG i  of seismic intensity I  and the dashed line 

reports the conditional probability of failure for 

systems with different capacity parameters c .  

Figure 2 also permits a comparison of results 

concerning structural systems with different 

dispersion  . The capacity corresponding to the 

target conditional probability of failure 
* 0.05fP =  notably increases by increasing the 

capacity dispersion. More precisely, the capacity 

necessary for *

fP  is 1.286c g=  for the smallest 



 

considered value of  , equal to 0.5, while it 

increases by 14%, 31%, and 52% passing from 

0.5 =  to the larger values 0.6, 0.7, and 0.8, 

respectively. 

In the following, the influence of the time 

elapsed from the last event is considered. 

Table 2 provides the data related to  the 

required capacity for the three particular instants 

discussed previously, i.e. 331yr, 416yr, and 

633yr, and compares the results obtained for the 4 

different values of  . As expected, by elapsing 

time from the last event, required capacity c  

increases. 

Also in this case, the variation of the required 

capacity is notably smaller than the variation of 

event occurrence. The hazard rate at 331yr is 

equal to 00.50h , while the capacity reduction 

spans the range 0.21-0.37 for the considered 

values of  . 
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Figure 4 ( )G i
I

and ( )Pf   curves 416 years after the last events for r=5km and a) β=0.5, b) β=0.6, c) β=0.7, and d) β=0.8 

Table 2 Required capacity for the target failure rate, 5r=  km , different   and different times 

β 
Median value of 

demand  

Elapsed time 

[yr] 
Required capacity c  

Variation from reference 

case 

0.5 0.450 g 

331 1.016 g -21% 

416 1.286 g 0% 

633 1.572 g 22% 

0.6 0.450 g 

331 1.131 g -22% 

416 1.463 g 0% 

633 1.841 g 26% 

0.7 0.450 g 

331 1.256 g -25% 

416 1.688 g 0% 

633 2.171 g 29% 

0.8 0.450 g 

331 1.411 g -37% 

416 1.949 g 0% 

633 2.582 g 32% 

 



 

 

 

Differently from the previous case, where the 

influence of the distance r  was analysed, the 

parameter   strongly influences results and the 

required capacity parameter becomes 

approximately double passing from 0.5 =  to 

0.8 = . 

On the other hand the hazard rate at 633yr is 

equal to 02.00h  and the required increment in the 

capacity parameter is bounded in the range 0.22-

0.32. 

Finally the trend in time of the capacity 

required for the target failure probability is 

discussed and the value of c  obtained in the 

range  250 ,1400yr yr  are reported in Figure 5 for 

the 4 values of   considered. 

As expected, the changes in required capacity 

by elapsing time are almost the same as the 

changes shown in Figure 3. The curves of Figure 

5 show that the required capacity increases as the 

time elapsed form the last event grows and the 

rate of this increment is not constant but 

decreases with elapsing time. In other words, the 

required capacity increases sharply up to 

approximately 600yr from the last event. Then, it 

increases slightly for elapsed time from 600yr to 

1200yr and finally it remains almost the same 

from 1200yr to 1400yr after the last event. The 

other significant point which can be concluded is 

that after approximately 250yr from the last 

event, required capacity for different values of   

is roughly the same. Nonetheless required 

capacity starts to vary for different values of   

with elapsing time over 250yr. Finally, It can be 

said that the slope of curves for different values 

of β is not the same. In other words, the larger β 

is, the greater the slope will be. 

 
Figure 5 The change of required capacity by elapsing time 
for constant 5r km=  and variable  . 

5 CONCLUSIONS 

The Impact of Time-Dependent Seismic 

Hazard  on design capacity was assessed in this 

study by evaluating the strength required by the 

structure for varying time intervals elapsing from 

the last event, in order to ensure a target value of 

the failure rate is not exceeded. A point-source is 

considered and results concerning different site-

to-source distance r , and capacity dispersion   

are discussed. The case study presented concerns 

the Paganica fault, located in central Italy. 

Based on the results, the following conclusions 

can be drawn. 

− High variations in hazard rates do not 

translate into similar variations in  the 

capacity required to ensure the target  

failure rate, and capacity variations 

observed in the case study are moderate. 

− For the case considered (point-source, 

BPT model, 750RT yr= ) required 

capacity drops to 0 at a critical instant ,

219t yr=  and variations in time become 

negligible for 600t yr . 

− As expected, required capacity decreases 

by increasing the source-to-site distance. 

The  variation in the time trend is similar 

for all the distances considered. 

− The response parameter   notably 

influences the required capacity and 

different trends are observed in time. 
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