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ABSTRACT  

Ambient modal identification, also known as Operational Modal Analysis (OMA), aims to identify the modal 

properties of a structure based on vibration data collected when the structure is under its operating conditions, i.e., 

no initial excitation or known artificial excitation. This procedure for testing and/or monitoring historic buildings, is 

particularly attractive for civil engineers concerned with the safety of complex historic structures. However, since 

the external force is not recorded, the identification methods have to be more sophisticated and based on stochastic 

mechanics. 

In this context, this contribution will introduce an innovative ambient identification method based on applying the 

Hilbert Transform, to obtain the analytical representation of the system response in terms of the correlation function. 

In particular, it is worth stressing that the analytical signal is a complex representation of a time domain signal: the 

real part is the time domain signal itself, while the imaginary part is its Hilbert transform. A real historic building has 

been considered as a case study, Chiaramonte Palace, and results assess the efficiency of the proposed method. 

Chiaramonte Palace, known as “Steri”, is a rare and precious example of fourteenth-century architecture in Sicily. It 

is located in the “Marina”, a hinge between the harbor of the city of Palermo and part of the ancient quarter of Kalsa, 

and today it is the headquarters of the University's Rector. 

 

 

1 INTRODUCTION  

The accurate estimation of the modal 
parameters (frequencies, damping coefficients and 
mode shapes)  of a structure has become a 
challenging phase in the structural analysis to 
preserve historical and monumental heritage from 
seismic actions.  

The identification of the dynamic 
characteristics is fundamental in order to 
investigate the seismic vulnerability of existing 
structures, to plan enhancing changes, to update 
structural models as well as setting up vibration-
based structural health monitoring. 

In the past, the modal identification was 
generally based on force vibration tests involving 
impacts tests or other complex setups applying 
several types of input exciters directly in-situ.  

In this context, it is customary to refer to the 
modal analysis based on artificial forced excitation 
as Experimental Modal Analysis (EMA) which 
presupposes the use of both known  

 

 
 
input and structural response measurements to 
estimate modal parameters. 

Nowadays, the current trend in the modal 
identification field suggests the use of another 
technique, the Operational Modal Analysis 
(OMA), also named as ambient or output-only 
modal analysis (Brincker et al. 2005). 

OMA is denoted as an ambient vibration 
identification method since it allows dynamic tests 
to be performed in in-service structures, 
considered not subjected to artificial forces but to 
ambient noise vibrations (wind, traffic, water 
waves, man-made excitations and so on). Hence, 
the modal identification associated with OMA 
techniques requires to recorder response data only 
without the need to know the input force.  

Tackling issues involved in the measure of 
dynamic forces exciting structures, OMA is of-ten 
preferable in the structural health monitoring field 
compared to classical EMA tests, which normally 



 

may not be conducted routinely and economically 
since they interfere with the operating condition of 
structures. 

In the framework of OMA, researchers have 
demonstrated the reliability of both frequency and 
time domain approaches to estimate the structural 
modal parameters of a large variety of structures 
(Brincker et al. 2005). It is worth noting that, since 
the external force is not recorded, testing OMA 
procedures are based on concepts from stochastic 
mechanics (Barone et al. 2008). 

Classical OMA frequency domain techniques 
generally extract the modal parameters from the 
frequency response functions (FRFs) or from the 
auto power spectral density functions (PSDs) and 
cross power spectral density functions (CPSDs) of 
the outputs, considering that modes can be 
estimated taking into ac-count the amplitude of 
their peaks at the correspondent main frequencies 
of the system (Bendat and Piersol 1993). 

Among the several OMA procedures, the main 
and most utilized are the Peak-picking combined 
with the Half power (PP+HP) (Bendat and Piersol 
2011) and the Frequency Domain Decomposition 
(FDD) (Brincker et al. 2000). These methods are 
generally based on the input-output PSD 
relationship (Bendat and Piersol 2011). Clearly, in 
this case, the PSD of the input is unknown since 
the excitation source is due to natural or operative 
loadings. Thus, the basic idea of OMA hypotheses 
a white noise process as external force, 
characterized by a flat power spectral density in 
the frequency range of interest (Brincker et al. 
2000). Hence, under white noise assumption, all 
the FRFs and PSDs/CPSDs of the output are 
known in the frequency domain. It is worth 
highlighting that then, by using the Wiener–
Khinchine theorem (Bendat and Piersol 2011), the 
auto correlation functions (CORs) and cross 
correlation functions (CCORs) of the output can 
be obtained in the time domain too. 

As it is well known, since frequency domain-
based methods depend strongly on the frequency 
resolution of the FRFs/PSDs, the identified modal 
parameters, and especially the damping estimation 
could not be very accurate when the damping is 
very high or the modes are very close to each other 
(Bendat and Piersol 2011). 

In the present study, an identification 
technique, focused on the identification of the 
damping ratio and based on applying the Hilbert 
Transform (HT) (Cottone et al. 2008), (Cottone et 
al. 2014), (Lo Iacono et al. 2012), to obtain the 
analytical signal (AS) in terms of correlation 
functions, has been developed. Notably, the 
analytical signal is a complex representation of a 
time domain signal: the real part is the time domain 

signal itself, while the imaginary part is its Hilbert 
transform. It has been observed that it is very 
vulnerable to variations of some signal quantities, 
such as phase and instantaneous frequency, so it 
seems to be an appealing means to detect with high 
precision the modal parameters of a structure 
(Agneni 2004). 

Moreover, AS is combined with a proper mode 
decomposition algorithm which, assuming a 
stationary white noise process as external force, 
decomposes the initial output PSD matrix in a 
summation of monocomponent “filtered” 
PSDs/CPSDS, each one corresponding to a single 
oscillator (Cottone et al. 2008). Then, once the 
FPSDs/FCPSDs are transformed into 
monocomponent CORs/CCORs of the outputs, the 
structural parameters can be detected in the time 
domain. 

In this contribution, the identification algorithm 
is presented for a single degree of freedom (SDOF) 
system and a numerical analysis carried out on the 
Chiaramonte Palace, a real historic building 
located in Palermo and known as “Steri”, proves 
the efficiency of the proposed method. 

2 IDENTIFICATION ALGORITHM 

In this paper, an innovative ambient 

identification method to estimate the frequencies 

and the damping ratios of a structure from the 

analytical signal of the output vibration data is 

proposed. Once the output signals of a system, 

subjected to environmental noise, have been 

acquired in terms of accelerometer data, it is 

necessary to estimate the PSDs/CPSDs in the 

frequency domain in order to obtain the 

CORs/CCORs. Finally, by means of the Hilbert 

Transform (HT), it is possible to define the 

analytical signal (AS), a complex signal which 

allows the dynamic characteristics (frequencies, 

damping coefficients) to be easily extracted from 

its properties.  

The method, denoted as Analytical Signal-

based method (ASM), can be summarized in the 

following steps: 
1) Acquisition of the structural response 

signals; 
2) Estimation of the PSDs/CPSDs from 

output data (Welch method); 
3) Estimation of the CORs/CCORs from the 

PSDs/CPSDs (Wiener-Kinchine), by means of the 
inverse fast Fourier transform (IFFT); 

4) Estimation of the AS (by means of the HT) 
and its properties (Envelope, phase); 



 

5) Identification of the modal parameters 
(instantaneous frequencies and damping ratios). 

The meaning of each step will be explained in 
detail in the following example resorting a linear 
SDOF structural model (Figure 1). 

Consider a structural system with mass 1M , 

stiffness 1K  and damping 1C , set so that the value 

of the damping ratio ( )1 1 1 1/ 2 = C K M  is 0.05 

and the natural frequency 
1 1 1/ / (2 )f K M = is 

30 Hz. These two parameters represent the modal 

properties to be identified with the proposed 

procedure. 

 
Figure 1. SDOF structural model. 

The system is excited by a white noise process 

( )W t  as the external force so that the power 

spectrum of the input is flat. Let ( )1x t  denote the 

displacement response of the SDOF system 

relative to the ground. The dynamic behavior of 

this system is governed by the following equation 

of motion: 

2

1 1 1 1 1( ) 2 ( ) ( ) ( )+ + =x t x t x t W t   (1) 

where 1 12 = f  is the circular frequency. 

In order to estimate the output in terms of PSD, 
the Welch Method (Welch 1967) is applied to the 
structural acceleration 1( )x t (Figure 2). 

 
Figure 2: Structural acceleration. 

Specifically, the application of the Welch 
Method requires some parameters such as the 
window function (Hanning, Hamming, etc...), the 
sub-segments length and the percentage of overlap 
to be set (Barbé et al. 2010). As a matter of fact, 
the original signal 1( )x t is divided into N sub-
segments, overlapped in time. To each one a 
window function is applied in the time domain so 

that the sub-signal tends to zero at the edges. In 
this numerical example, the Hamming window, an 
overlap of 50% between adjacent segments and a 
sample rate of 1000 Hz have been applied. 

Then, by means of the Fast Fourier Transform 
(FFT), computed for each sub-signal, the two-
sided PSD of each sub-signal, denoted as 

1 1 , ( )x x r fS
, (with 1, 2 = r N ) can be obtained by: 

1 1

2

, 1,

1 1
( ) [ ( ) ]

2 2
→=x x r T rf lim E X f

T
S


 (2) 

 where 1, ( )rX f  is the Fourier transform of each 

sub-signal of 1( )x t . 

The mean of all the “sub” PSDs gives the total 

two-sided PSD function ( )
1 1x xS f of the structural 

acceleration 1( )x t  (Figure 3): 

( )
1 1 1 1

1

, )
1

(
=

= 
N

x x x x

r

rS f S
N

f  (3) 

 
Figure 3: PSD function of the structural acceleration 
response. 

According to the Wiener–Khinchine theorem, 

the IFFT of the ( )
1 1x xS f  yields the corresponding 

correlation function ( )
1 1x xR   (Figure 4): 

( )
1 1 1 1

2( )

+

−

= 
i f

x x x xR S f e d    (4) 

where i  is the imaginary unit. 

 
Figure 4: COR function of the structural acceleration 
response. 



 

At this point, the Hilbert transform operator can 
be straightforwardly applied to the correlation 
function. Its HT is defined as: 

( )
( )

1 1

1 1

1ˆ d
t

x x

x x

R
R



−

= 
−


 
 

 (5) 

where   stands for the principal value. 

The complex analytical signal ( )
1 1x xz  , in 

terms of the correlation function, is defined as: 

( ) ( ) ( )
1 1 1 1 1 1

ˆ= +x x x x x xz R iR    (6) 

The AS is a complex representation of a time 

domain signal. Specifically, in this case, the real 

part is the correlation function itself ( )
1 1x xR  , 

while the imaginary part is its Hilbert transform 

( )
1 1

ˆ
x xR 

 
(Figure 5). 

 
Figure 5: Analytical signal: complex representation of a time 
domain signal (AS-black thick line; real part-black line; 
imaginary part-dashed dotted black line; phase diagram-
dotted black line). 

The two main properties characterizing the 

analytical signal are the amplitude (or envelope) 

( )1A   and the phase angle ( )1  , respectively 

defined as: 

( ) ( ) ( )
1 1 1 1

2 2

1
ˆA x x x xR R= +    (7) 

( )
( )

( )
1 1

1 1

1

ˆ
arctan

x x

x x

R

R

 
=  

  


 


 (8) 

These two functions allow the damping ratio 

and the main frequency of the system to be 

derived. In particular, from the phase angle ( )1   

is possible to extract the structural frequency while 

from the amplitude the damping ratio. According 

to (Agneni 2004) and considering the Bedrosian 

theorem (Bedrosian 1962), (Bedrosian 1963), the 

correlation function and its Hilbert transform can 

be expressed in the form: 

( ) ( )
1

11

1

2

1 1 1i  s n 2
f

x x ER e f
     −

= − +  (9) 

 

( ) ( )
1

11

1

2

1 1 1
ˆ 2 

f

x x E e cosR f
    −

= − +  (10) 

where 1  E  is a constant, 
2

1 1 11 = −f f the 

natural damped frequency of the system and 1  the 

initial phase.  

In the light of above, the amplitude ( )1A   and 

the phase angle ( )1   of the analytical signal 

assume the following expressions: 

( ) 112 f

1 1 eA  E   −
=  (11) 

( )1 1 12 f    = +  (12) 

 

Although the frequency is known from the PSD 

analysis and it could be identified by the use of the 

PP method, it is worth noting that the first 

derivative of the phase angle ( )1   (considered as 

an unwrapped function as discussed in (Lo Iacono 

at al. 2012) yields a time dependent function, 

termed instantaneous frequency: 

( )
( )1

1,
2

=istf
 




 (13) 

 
Figure 6: Instantaneous frequency function. 

As it can be seen in Figure 6, the ( )1,istf   is an 

almost constant function, so the natural damped 

frequency of the system 1f can be identified as its 

mean value: 

( )1 1,[ ]= istf E f   (14) 

with [ ]E  denoting the expectation operator. 
Further, from the logarithmic representation of 

the amplitude, depicted in Figure 7, the damping 
ratio can be derived. 



 

 
Figure 7: Logarithmic representation of the amplitude of the 
analytical signal. 

Note that the natural logarithm of the amplitude 

defined in Eq. (11) can be represented by a straight 

line of coefficients 1c  and 2c  as follows: 

( )1 1 1 1 1 2ln(A ) ln 2E f c c= − = +      (15) 

Consequently, the damping ratio 1 , associated 

with the instantaneous frequency 1f , is given by 

the relationship between the tangent to the 

logarithmic representation of ( )1A   and the 

frequency: 

( )1

1

1

tan[lnA ]

2 f
=





 (16) 

Table 1 shows the natural damped frequency 

and the damping ratio estimated by the ASM and 

PP+HP and the discrepancies computed with 

respect to the exact values ( 1 29.9625f = Hz, 

1 0.0500 = ). As emerges, results are similar by 

employing both methods. In particular, the ASM 

attains slightly more accurate estimates compared 

to PP+HP. Importantly, the small differences 

occurring between exact and identified values, 

computed for both the modal parameters, prove as 

the aforementioned approach can be considered as 

a reliable output data-based tool for the estimation 

of modal parameters.  

Table 1. Estimated natural frequency and damping ratio for 

1 0.05= (exact value). 

 
PP+HP 

 

Discrepancy 

[%] 

ASM 

 

Discrepancy 

[%] 

1f [Hz]
 

30.2365 0.9144 29.9100 0.1753 

1  
0.0494 1.1786 0.0499 0.2490 

 

Finally, the analysis has been carried out 
increasing the damping ratio of the system. In-
deed, it has been demonstrated that the estimation 
of modal parameters, and especially of the 
damping coefficient, based on methods which 
presuppose the knowledge of auto and cross-

spectra of the output (such as PP+HP and FDD), it 
is reliable if some conditions are respected (Bendat 
and Piersol 2011). Specifically, a limit imposing 
that the damping ratio should be lower than 0.05. 

Therefore, in order to investigate the capability 
of the ASM to overcome limits involved in 
frequency domain-methods, the damping ratio of 
the system has been increased so that 1 0.08 = . 

The obtained values and discrepancies on the 
identification of frequency and damping ratio are 
reported in Table 2: 

Table 2. Estimated natural frequency and damping ratio for 

1 0.08= (exact value). 

 
PP+HP 

 

Discrepancy 

[%] 

ASM 

 

Discrepancy 

[%] 

1f [Hz]
 

30.1819 0.9298 29.6018 1.0101 

1  
0.0777 2.8786 0.0789 1.3928 

 

As shown in Table 2, using both the PP+HP and 
the ASM methods, the natural damped frequency 
is still well estimated, whereas looking at the 
considered higher damping ratio, as it is expected, 
the ASM can achieve a better estimation. This 
result suggests that the ASM, overcoming the 
limitations involved in frequency domain-based 
methods, can be adopted as a reliable identification 
method even when dealing with structures 
characterized by damping ratios greater than the 
5%. 

It is worth noting that, dealing with a multi 

degree of freedom (MDOF) system, although the 

procedure is the same as that described for the 

SDOF system, the steps have to take into account 

that the initial PSD matrix of the response data 

contains multicomponent PSDs/CPSDs 

characterized by the contribution of all the modes 

for each degree of freedom. 

As a matter of fact, as well-known from modal 

analysis, for a MDOF system with n degrees of 

freedom, the generic displacement response ( )jx t

(with 1,2,..,j = n) is the sum of the modal 

responses: 

( ) ( ) ( )
1 1

n n

j jp p jp

p p

x t q t x t
= =

= =   (17) 

where p indicates the mode and jp  is the jpth 

element of the system modal matrix and ( )pq t  the 

displacement in the modal space. 

From the superposition formula it emerges that 

the response ( )jx t  of each degree of freedom j  is 

influenced by all the structural modes jp . 



 

Consequently, also the responses in terms of 

PSDs/CPSDs will contain the contribution of all 

the modes. In this case, the modal parameters 

cannot be extracted directly from the derived 

analytical signals in the time domain.  

In order to apply the proposed method, 

PSDs/CPSDs should be decomposed in such a way 

that monocomponent signals corresponding to 

several SDOF systems, each one containing 

information about a specific structural mode, are 

obtained.  

It worth stressing that the decomposition into 

monocomponent PSDs/CPSDs, herein denoted as 

“filtered” PSDs (FPSDs) and filtered CPSDs 

(FCPSDs), can be achieved by means of proper 

filters (such as the Butterworth filter for instance). 

Once FPSDs/FCPSD are estimated, the 

correspondent filtered auto correlation functions 

(FCORs) and filtered cross correlation functions 

(FCCORs) can be obtained and the method is 

exactly applicable to each filtered function as 

shown for the SDOF system. 

3 A CASE STUDY: CHIARAMONTE 

PALACE IN PALERMO 

A practical implementation of the proposed 
procedure, applied to a real case study, is here 
presented and results have been compared with 
those achieved by applying the PP+HP. 

The building considered in this paper is the 
Chiaramonte Palace, located in Palermo (Italy). 
This imposing fortress-palace, also known as “Lo 
Steri”, (from “hosterium”, meaning a fortified 
place), is in the city area called “Marina”, a hinge 
between the harbour and part of the ancient Arabic 
quarter named Kalsa (Figure 8). The palace is a 
three-floor masonry structure built in the 1307 by 
the will of Giovanni Chiaramonte the “Old”, 
member of the most powerful and influent family 
of that time (Lima  2006). 

It represents a rare and precious example of 
XIV-century Sicilian architectural style showing 
Arabics and Normans influences. Its role as a 
symbol of the royal power in Sicily justifies its 
dimensions and peculiarities: its squared floor 
plans, gravitating on a porticoed courtyard, hold 
broad delegation rooms for public assemblies. The 
palace went through many changes and 
restorations and it was used for different scopes 
since the fifteenth century. Many spaces were 
converted into and offices, exhibition areas and 
museums (Giuffrè 2008) and currently it houses 
the rectorate of the University of Palermo. 

 
Figure 8. Satellite view of Chiaramonte Palace in Palermo. 

The palace square plan, with a side of about 40 
meters, consists of four wings surrounding the 
magnificent courtyard with its portico on the 
ground floor and the upper loggia, anticipating the 
Renaissance model of a mansion. 

The courtyard (Figure 9) is the main 
architectural element of the building and it is the 
object of the present study. The magnificent dual 
arcade, surmounted by a terrace, presents essential 
shapes with ogival arches resting on columns with 
capitals of different appearance and provenance. It 
extends over an area of about 420 m2, with a 
20.25x20.40m squared plan and an overall height 
of 19.50m, on three floors. 

 
Figure 9. The inner courtyard. 

Field tests have been performed to identify its 
dynamic characteristics with the purpose of the 
calibration of a numerical model for future 
evaluation of the structural health in order to 
preserve the historical and architectural 
uniqueness of the building in a relevant seismic 
area as Palermo (Bilello et al. 2016). 

3.1 Acquisition of the structural response 

signals 

As far as the first step of the procedure is 
concerned, the acceleration measurements have 
been acquired using eight high-sensitivity 
piezoelectric mono-axial accelerometers, whose 



 

characteristics are listed in Table 3. Four couples 
of the overall eight accelerometers have been 
located at four measuring points to record bi-axial 
accelerations, along the u1 and u2 directions, 
respectively. Accelerometers n°1-4 have been 
oriented along the u1 axis while n°5-8 along the u2 
axis. The couple {n°1, n°5} has been placed at the 
ground floor, the another one, {n°2,n°6}, at the 
first floor and the two couples {n°3, n°7} and {n°4, 
n°8} at the second floor of the courtyard (Figure 
10). 

Table 3. Accelerometers features. 

Feature Value 

Sensitivity 1000 mV/g 

Measuring range ±5 g pk 

Frequency range 0.06 to 450 Hz 

Broadband Resolution 0.000003 g rms 

Mass 50 grams 

 

Six tests have been performed considering an 

observation window of ten minutes and 

acceleration data have been recorded by sensors 

using a sampling frequency of 100 Hz. Further 

details of the experimental setup are reported in 

references (Bilello et al. 2016). Data in the 

following are referred to one test within the six 

tests since no significant variations have been 

found. 

The structural recorded accelerations ( )jx t  

(with 1,2,...,j N= ), being N=8 the number of 

recording channels, are assumed to be stationary 

and ergodic random processes, outputs of a linear 

system excited by white noise input. 
The identification of modal parameters starts 

from the evaluation of the auto Power Spectral 
Density (PSD) and Cross-Power Spectral Density 
(CPSD) functions associated to the acquired data. 

It is worth noting that the case study, here taken 
into account, represents a MDOF system so the 
initial PSD matrix of the response data contains 
multicomponent PSDs and CPSDs characterized 
by the contribution of all the modes for each 
channel. 

As a consequence, after the PSD matrix 
estimation with the Welch Method, its 
decomposition into monocomponent 
PSDs/CPSDs, in order to estimate the 
correspondent filtered correlation functions. 

 
 

 
Figure 10. Location of measuring points and sensor 
labelling. 

3.2 Estimation of the PSDs from output data 

The PSD matrix is obtained using Welch’s 

method which subdivides each acceleration ( )jx t  

into N  sub-signals and computes a modified 

periodogram for each segment. As in the SDOF 

case, the segments are typically multiplied by a 

window function and overlapped in time to avoid 

information loss at the beginning and end of each 

segment. In this study a length of the sub-segments 

of 40.95 sec (4096 sampling points), a Hamming 

function for windowing and a 50% overlap 

between adjacent segments have been assumed. 

In view of the above, the two-sided PSDs 

, ( )
j kx x r fS  (with 1,2,...,k N= ) for each sub-

segments can be obtained by: 

*

, , ,

1 1
( ) [ ( ) ( ) ]

2 2
→=

j kx x r T j r k rS f lim E X f X f
T

 

 (18) 

where * denotes the conjugate transpose and 

, ( )j rX f is the Fourier transform of the sub-signal

( )jx t . Specifically, when =k j  the PSDs 



 

, ( )
j jx x r fS  are obtained, while if k j , , ( )

j kx x r fS  

represent the CPSDs of the system. 

Then, considering the mean of all the 

contributes, the final PSDs and CPSDs are 

obtained by: 

( )
1

, ( )
1

j k j k

N

x x x

r

x r fS f S
N =

=    (19) 

Thus, the PSDs ( )
j jx xS f  and the cross ones 

( )
j kx xS f  are collected in the two-sided PSD 

matrix ( )xx fS , as diagonal and off-diagonal 

terms respectively, as follows: 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

1 2

...

...
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N

N

N N N N

x x x x x x

x x x x x x

xx

x x x x x x

S S S

S

f f f

f f fS S
f

f f fS S S

 
 
 

=  
 
 
 

S  

 

It is worth stressing that each term of ( )xx fS , 

obtained by the use of the Welch Method, is a 

multicomponent function. 

Figure 11-12 show auto PSDs functions 

( )
j jx xS f obtained from the acquired accelerations 

for channels 1-4 (u1-axis) and 5-8 (u2-axis). It can 

be clearly pointed out the presence of structural 

modes in the frequency range 0-6 Hz. 

Furthermore, it should be also noticed that, in the 

frequency range between 3.0 Hz and 4.2 Hz, PSDs 

exhibit a series of local maxima representing 

possible multiple modes closely spaced. 

 
Figure 11. PSDs of acquired signals: channels 1-4 u1-axis. 

At this stage, many ambient identification 

methods, such as the PP+HP and FDD, determine 

all the modal characteristics considering the 

multicomponent PSDs/CPSDs and their phases.  

 
Figure 12. PSDs of acquired signals: channels 5-8 u2-axis. 

Firstly, in this study, natural frequencies and 
damping coefficients of the structure have been 
estimated directly from the peaks of the PSDs 
using the PP+HP method (Barbé 2010). 

Table 4 lists the first four identified natural 
frequencies and the corresponding damping ratios. 
Frequencies can be considered accurate enough 
since the deviation from different data sets was 
very small, while damping ratios appear to be 
lower than expected for masonry buildings; 
however, the structure has been investigated in 
operational conditions and this is consistent with 
the fact that the energy dissipation associated to 
micro-tremors is usually much smaller than during 
strong excitation as earthquakes. 

Table 4. Estimated natural frequencies and damping ratios 

with the PP+HP method. 

Mode n° 
f

 
[Hz] 


 

[%] 

1 2.7554 1.3291 

2
 

3.5645 2.0548 

3
 

3.9551 2.2226 

4 5.2576 1.8819 

 

Thus, considering the well-attained estimation 
of the damping ratio for the SDOF system 
analysed in Section 2, the ASM is focused on a 
more accurate definition of the damping. To this 
end, it suggests operating on filtered signals 
(FPSDs/FCPSDs) and to derive the frequencies 
and damping ratios from the analytical signals 
expressed in terms of FCORs/FCCORs in the time 
domain. 

In this regard, to decompose multicomponent 
signals many kinds of filters exist in literature: 
Butterworth, Elliptic or Chebyshev and so on, with 
different specifications (Van Valkenburg 1982). In 
order to isolate the contribution of each mode, the 
use of filters requires the definition of a frequency 
range centered on the frequency of the analyzed 
mode. However, frequencies can be easily 
obtained by an initial use of the PP method. In this 
case a Butterworth band-pass filter of order 8 has 
been considered. 



 

Once the Butterworth filter has been applied to 
each multicomponent PSD (auto and cross) of the 
original PSD matrix, as many FPSDs and FCPSDs 
as the number of channels are obtained for each 
mode, each one containing characteristics of only 
one individual mode. 

Thus, applying the filter to the original 

multicomponent ( )
1 1x xS f  for instance, in the 

frequency range centered on the first frequency of 

the system (2.62-2.89 Hz), a FPSD, denoted as 

( )
1 1F x xS f , characterized by the contribution of the 

first mode only, is obtained. 

Repeating the same procedure for each original 

PSD ( )
j jx xS f , eight FPSDs ( )

j jF x xS f  are 

obtained in total for the first mode. 

In Figure 13 the four functions ( )
j jF x xS f  of 

acceleration responses, only recorded along the u1 

axis, are depicted. They represent the PSDs of four 

single oscillators dominated by the modal 

parameters of the first mode only. As emerges, all 

the peaks comparing in Figure 11 are not visible 

anymore and only the first mode can be clearly 

individuated. 

 
Figure 13: FPSDs of the structural acceleration responses 
(recorded along the u1 axis) in correspondence of the first 
mode. 

In the same way, filtering the original CPSDs 

( )
j kx xS f , corresponding FCPSDs ( )

j kF x xS f  are 

obtained for the first mode.  

Changing the frequency range of the filter to 

correspond with the next modes FPSDs and the 

FCPSDs are obtained for the other modes too. In 

Figure 14 the four functions ( )
j jF x xS f  of 

acceleration responses only recorded along the u1 

axis are depicted considering this time the filtering 

in the frequency range of the second mode (3.38-

3.74Hz). As can be seen, the contribute of the first 

mode, highlighted in Figure 14) by the peak in the 

range 2.62-2.89 Hz, is disappeared as well as all 

the other modes except from the second one. 

In this manner, henceforward the modal 
analysis for each signal is the same as that 
described in the SDOF case. Clearly, for a SDOF 
structure, the solution of the modal parameters is 
unique, while for a MDOF system, the mean of the 
values obtained for each channel should be 
considered. 

 
Figure 14: FPSDs of the structural acceleration responses 
(recorded along the u1 axis) in correspondence of the second 
mode. 

3.3 Estimation of the CORs from the PSDs 

Then, by means of the IFFT, from the obtained 

FPSDs/FCPSDs, the estimation of the 

FCORs/FCCORs follows. Obviously, the 

procedure should be repeated for all the channels 

and for all the number of modes of interest. 

In Figures 15-16 the FCORs, denoted as 

( )
j jF x xR f

 
of the signals recorded along the u1 

axis are shown. Figure 15 shows the four functions

( )
j jF x xR f  filtered in correspondence of the first 

mode while Figure 16 in correspondence of the 

second one. 

 
Figure 15: FCORs of the structural acceleration responses 
(recorded along the u1 axis) filtered in correspondence of the 
first mode. 



 

 
Figure 16: FCORs of the structural acceleration responses 
(recorded along the u1 axis) filtered in correspondence of the 
second mode. 

3.4 Estimation of the AS and its properties 

Finally, by applying the Hilbert transform to the 
FCORs/FCCORs, filtered analytical signal are 
derived too and the same procedure shown for the 
SDOF case can be carried out. 

3.5 Identification of the modal parameters 

Table 5 shows results derived from the 
application of the ASM for the first four modes and 
discrepancies have been computed assuming the 
PP+HP method as reference. 

As shown, using the proposed approach, the 
identified frequencies and damping ratios are 
almost identical to those estimated by the PP+HP 
(Table 4). 

Table 5: Estimated natural frequencies and damping ratios 

with the ASM. 

Mode 

n° 
f

 
[Hz] 

Discrepancy 

[%]
 


 

[%] 

Discrepancy 

[%]
 

1 2.7452 0.3548 1.17 11.6947 

2
 

3.5883 0.6821 1.42 30.9794 

3
 

3.9395 0.3907 1.52 31.7027 

4 4.7212 0.0466 1.58 13.0246 
 

Clearly, dealing with an existing historic 
building, do not exist any exact theoretical values 
as reference in order to establish the accuracy 
among the several identification methods.  

Nevertheless, close values of modal 
parameters, obtained through different procedures, 
suggest the reliability of the proposed technique. 
Indeed, the estimation of the modal parameters 
based on the proposed procedure is in agreement 
with the traditional PP+HP method, especially in 
terms of frequencies. 

More differences are achieved in the definition 
of damping coefficients. However, since the 
analytical signal is more sensitive to changes of 
structural characteristics over time, the extraction 
of modal parameters by the instantaneous 
frequency and amplitude associated with the 
monocomponent correlation functions, may be 

particularly efficient in the field of structural 
monitoring. 

4 CONCLUSION 

In this paper, a novel identification procedure 
from ambient vibration data, denoted as Analytical 
Signal-based method (ASM), is proposed for the 
estimation of the modal parameters of a structure 
under the white noise assumption as input force. 

The method is based on the use of the 
Analytical Signal and the Hilbert Transform, 
applied to properly decomposed response data. 
Indeed, when a MDOF system is considered, the 
structural responses are characterized by the 
influence of all the structural modes and the modal 
parameters cannot be extracted directly from them 
in the time domain, so they need to be 
decomposed. The decomposition of the output 
signal, by means of the Butterworth filter, leads to 
a set of monocomponent signals corresponding to 
several SDOF systems, each one containing 
information about a specific structural mode. The 
presented approach requires only the frequencies 
of the modes which can be easily detected by the 
Peak Picking method. 

As shown, natural frequencies and damping 
ratios can be obtained from the analytical signal of 
the estimated filtered correlation functions, which 
in turn have been achieved from the filtered power 
spectral density functions of the output signal. 

In order to investigate the reliability of this 
approach to extract dynamic characteristics of 
structures of the cultural heritage, ambient 
vibration tests have been performed on the 
Chiarmonte-Steri Palace, an historical building 
located in Palermo. Specifically, the ASM has 
been applied to recorded signals of eight 
accelerometers opportunely located in the inner 
courtyard of the structure. 

Results derived by the use of ASM, compared 
to the classical PP+HP, suggest that the proposed 
approach can be considered as a reliable output-
only technique for frequencies and damping ratios 
extraction from the analytical signal. 

On the basis of the encouraging results, future 

research will aimed at investigating the reliability 

of the ASM to detect the mode shapes so that the 

overall dynamic behavior of the system can be 

detected. 
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