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ABSTRACT 

An efficient framework for the seismic fragility evaluation of a case study of unanchored steel storage tank is 

presented in this paper. The framework is based on a surrogate model of the tank that allows using a few simulations 

of the tank model and hence significantly reduces the computational cost. Firstly, a proper design of experiments 

approach is selected to generate model samples with input random variables. In particular, the peak ground 

acceleration and the liquid level are considered as random variables in this study. Three-dimensional finite element 

models are then built for the generated samples, and nonlinear dynamic analyses are performed using a set of ground 

motion records. The Gaussian process modelling, also known as Kriging modelling, is finally used to interpolate 

model responses obtained from the analyses. Since the Kriging model is built, seismic fragility curves of critical 

failure modes of the tank are derived using Monte Carlo simulations. 

 

 

1 INTRODUCTION 

In the framework of the probabilistic seismic 
risk assessment, the seismic vulnerability 
evaluation of structures represented by fragility 
curves has been a key role and indispensable. 
Although there are some available fragility 
databases, e.g., for storage tanks, ALA (2001), 
HAZUS (2001), they are empirically built for 
general types of structures with the substantial 
amount of assumptions and uncertainties. 
Analytical fragility curves are widely used in 
recent decades. The curves are frequently 
developed based on results of nonlinear dynamic 
analyses of structural models. Therefore, the 
accuracy of fragility functions strongly depends on 
the reliability of numerical models. 

Development of numerical models of storage 
tanks for modelling the seismic response as well as 
the damage distribution has received more 
attention in recent decades. Due to the complexity 
of various nonlinear mechanisms, three-
dimensional finite element (3D FE) models are 
more suitable in predicting nonlinear response of 
the tanks. For example, in the case of unanchored 

tanks, simplified models failed to predict local 
responses of the tanks caused by uplifting and/or 
sliding phenomena; therefore, 3D FE models 
considering full interactions between the tank and 
the liquid as well as the tank and the foundation 
are used instead. Unfortunately, the computational 
time required by these models is rather high. 
Hence, performing the fragility analysis based on 
such complex models is not viable. 

A valid alternative to improve the 
computational efficiency is the use of a surrogate 
model or metamodel, which can be defined as a 
synthetic model family representing the statistical 
relation between seismic inputs and structural 
outputs. This model can be built from a few 
number of response samples generated through 
accurate numerical models or experimental data 
(Bhosekar and Ierapetritou 2018). 

Different metamodeling approaches are 
available in the literature, which are either 
regression or interpolation models, e.g., high-
dimensional model representation (HDMR), 
polynomial regression, artificial neural network 
(ANN), LASSO regression, Bayesian network, 
multivariate adaptive regression spline (MARS), 
radial basis function network (RBFN), support 



 

vector regression (SVR), or Kriging, etc. 
(Forrester et al. 2018). 

Among various types of metamodels, Kriging 
or Gaussian process regression is selected in this 
study. The basic idea of Kriging is to predict the 
value of a function at a given point by computing 
a weighted average of known values of the 
function in the neighborhood of the point. This 
approach treats the function of interest as a 
realization of a Gaussian random process whose 
parameters are estimated from available inputs and 
model responses (Rasmussen and Williams 2004). 

Some studies concerning the application of 
surrogate models in the fragility analysis have 
been realized recently. Surrogate models are built 
to calibrate the relation between structural 
responses and uncertain inputs of structural 
models, including ground motions and modelling 
parameters. Gidaris et al. (2015) proposed 
metamodel framework based on a Kriging 
surrogate model to approximate the mean and 
standard deviation of seismic demands which are 
used to analytically evaluate the seismic fragility 
curve of a benchmark four‐story concrete office 
building. Zhang and Wu (2017) demonstrated the 
applicability of a Kriging model to the seismic 
fragility analysis of an elastoplastic single degree 
of freedom (SDoF) system and a reinforced 
concrete bridge. 

In this paper, a surrogate model based on 
Kriging is proposed to build seismic fragility 
curves of an unanchored storage tank case study. 
The input random variables represented by the 
liquid level and the peak ground acceleration are 
considered, and a reliable design of experiments 
method is used to generate model samples. 3D FE 
models for the generated samples are then 
developed using the ABAQUS software, where 
the interaction between the tank and the liquid is 
taken into account by the coupled acoustic-
structure analysis. A set of ground motion records 
is selected, and nonlinear time history analyses are 
later performed. The Kriging model is built based 
on the output responses and the input random 
variables. Consequently, component fragility 
curves of the tank considering different ranges of 
the liquid level are evaluated by generating a large 
enough number of samples with the Monte Carlo 
technique. 

This paper is organised as follows. In Section 2, 
a brief description of the Kriging-based surrogate 
model is presented. Section 3 describes how the 
metamodel can be used for the fragility analysis of 
unanchored storage tanks. The application of the 
methodology to a case study of unanchored 
storage tank is presented in Section 4. Section 5 
finishes with some conclusions and perspectives. 

2 DESCRIPTION OF KRIGING-BASED 

SURROGATE MODEL 

In statistics, Kriging or Gaussian process 

regression is a method of interpolation for which 

the interpolated values are modeled by a Gaussian 

process. Kriging has been widely used as surrogate 

models or metamodels for deterministic computer 

models. A Kriging model is a generalized linear 

regression model that accounts for the correlation 

between the regression model and the observation. 

Considering a computer model 𝑦 = 𝐺(𝐱) , 

where 𝑦 is considered as a scalar and 𝐱 is a vector 

representing 𝑑  input parameters. Given 𝑛  design 

sites (𝐱1, 𝐱2, … , 𝐱𝑛)𝑇, the computer model output 

values are (𝑦1, 𝑦2, … , 𝑦𝑛)𝑇 =
(𝐺(𝐱1), 𝐺(𝐱2), … , 𝐺(𝐱𝑛))𝑇. 

The mathematical form of a Kriging model is 

given as: 

 

𝑌(𝐱) = ∑ 𝑓𝑗(𝐱)𝑝
𝑗=1 𝛽j + 𝑍(𝐱) = 𝐟𝑇(𝐱)𝛃 +

𝑍(𝐱)         (1)  

 

where 𝑓1(𝐱), 𝑓2(𝐱), … , 𝑓𝑝(𝐱) are known regression 

functions, 𝛃 = (𝛽1, 𝛽2, … , 𝛽𝑝)𝑇  is a vector of 

unknown regression coefficients, and 𝑍(𝐱)  is a 

stationary Gaussian random process with zero 

mean and covariance: 

 

cov (𝑍(𝐱i), 𝑍(𝐱j)) = 𝜎2𝑅(𝐱i − 𝐱j|𝛉)    (2) 

 

where 𝜎2  is the process variance. The spatial 

correlation function 𝑅(𝐱i − 𝐱j|𝛉) with known or 

unknown correlation parameters 𝛉  controls the 

smoothness of the resulting Kriging model and the 

influence of nearby points. 
Given the design sites (𝐱1, 𝐱2, … , 𝐱𝑛)𝑇  and 

corresponding output values 𝐘𝑛 =
(𝑦1, 𝑦2, … , 𝑦𝑛)𝑇, the output values Y(𝐱0) at a new 
input location 𝐱0  can be predicted using the 
Kriging model. Assuming that the 
hyperparameters 𝛉  are known, we have, 
conditional on (𝛃, 𝜎2): 

 

(𝑌(𝐱0)
𝐘𝑛 )~𝑁𝑛+1 ((𝑓0

𝑇

𝐅
) 𝛃, 𝜎2 (

1 𝑟0
𝑇

𝑟0 𝐑
))     (3) 

 

where 𝐟0 = 𝑓(𝐱0)  is the 𝑝 × 1  vector of 

regression functions of 𝑌(𝐱0) , 𝐅 = 𝑓𝑗(𝐱𝑖)  is the 

𝑛 ×  𝑝  matrix of regression functions for the 

training data, 𝑟0 is the 𝑛 × 1 vector of correlation 



 

of 𝐘𝑛  with 𝑌(𝐱0) , 𝐑  is the 𝑛 × 𝑛  matrix of 

correlation among the 𝐘𝑛. 
Then, the best linear unbiased predictor 

(BLUP) of 𝑌(𝐱0) is: 

 

�̂�(𝐱0)  =  (𝐟0
𝑇 (𝐅𝑇𝐑−1𝐅)−1𝐅𝑇𝐑−1 +

𝐫0
𝑇𝐑−1(𝐈𝑛 − 𝐅(𝐅𝑇𝐑−1𝐅)−1𝐅𝑇𝐑−1))𝐘𝑛     (4) 

 
The variance of the estimate �̂�(𝐱0) is: 
 

MSE(�̂�(𝐱0)) = 𝜎2(1 − 𝐫0
𝑇𝐑−𝟏𝐫0 +

(𝐅T𝐑−1𝐫0 − 𝐟0)𝑇(𝐅𝑇𝐑−1𝐅)−1(𝐅T𝐑−1𝐫0 −
𝐟0))         (5) 
 
In order to obtain a Kriging metamodel, 

usually, the hyperparameters 𝛉 are unknown and 
need to be estimated. The maximum likelihood 
estimation is used in this study. The idea is to find 
the set of parameters 𝛃 , 𝜎2 , 𝛉  such that the 
likelihood of the observations 𝐘𝑛 is maximal. 

3 FRAGILITY EVALUATION BASED ON 

SURROGATE MODEL 

The first step of the fragility evaluation of 
unanchored storage tanks based on the surrogate 
model is the definition of input variables. In the 
case of storage tanks, the uncertainties in 
modelling parameters including geometry and 
material properties are commonly considered. 
Phan et al. (2019) presented a screening study to 
find which modelling parameters have significant 
effects on the seismic response of unanchored 
tanks. The authors found that the liquid level is the 
most significant one. Fragility curves considering 
only the randomness of significant parameters are 
almost the same with ones considering all 
modelling parameters. Therefore, in the next 
section, only the liquid level is considered as the 
structural random variable to reduce the number of 
simulations. The randomness of ground motions in 
terms of the frequency content is also taken into 
account, where each ground motion is scaled with 
different 𝑃𝐺𝐴  values which are randomly 
generated along with the liquid level. 

The second step is to generate samples of input 
random variables using a proper DOE approach. 
Among different sampling methods available in 
the literature, Latin Hypercube Sampling (LHS) is 
often suggested for Kriging models (Jack and 
Kleijnen 2017). However, when few random 
variables are considered, Central Composite 
Design (CCD) also represents a valid alternative 
(Paolacci and Giannini 2009). This sampling 
method is widely used in response surface 

applications. By selecting corner, axial, and center 
points, it is an ideal solution for fitting a second-
order response surface model. However, as it 
requires a relatively large number of sample 
points, the CCD method should only be chosen 
when the total number of significant variables is 
reduced. 

In the third step, the 3D FE model is developed 
for each sample, and the nonlinear time history 
dynamic analysis is performed on each structure-
earthquake pair. The peak responses are measured 
at each analysed ground motion. The mean and 
standard deviation of the measured responses are 
calculated assuming a lognormal distribution. 
Hence, two experiment designs will be obtained, 
one for the mean value of the measured responses 
and the other one for their standard deviation. 

The fourth step is the development of the 
Kriging model for the mean and standard deviation 
of the responses. One the Kriging modes are built, 
a composed Kriging model is developed: 

 

�̂� = 𝑒�̂�𝜇+𝐿𝑜𝑔𝑁(0,�̂�𝜎)     (6) 
 

where, �̂�𝜇  and �̂�𝜎  are, respectively, the Kriging 
model of the mean and standard deviation of the 
response quantity. Equation (11) supposes a 
lognormal distribution of the response. The Monte 
Carlo simulations can be carried out based on the 
composed Kriging model by sampling the input 
random variables. Once a large enough number of 
predicted response values at a given 𝑃𝐺𝐴  are 
obtained, the empirical fragility curve, which 
presents the probability of exceeding a given limit 
state, can be derived. 

4 APPLICATION TO CASE STUDY 

4.1 Description of case study 

An existing tank ideally installed in a refinery 

in Sicily (Italy), which well represents a broad 

geometry, is selected for this study. The tank is a 

54.8-m-diameter cylindrical steel tank and 

unanchored with respect to the foundation. The 

tank height is 15.6 m, and the capacity of the tank 

is 37044 m3. The tank is provided with a floating 

roof; however, the effect of the floating roof is 

neglected in this study. The shell thickness has 

been designed varying from 8 mm at the top course 

to 33 mm at the bottom course. The bottom plate 

has a uniform thickness of 8 mm. The tank is 

assumed to fill with water at a filling level of 14 m 

(i.e., 90% of the tank height). Both shell and 

bottom plate are structured by S235 carbon 



 

structural steel having a yield strength of 235 MPa. 

More detail of nominal material and geometry 

properties is illustrated Errore. L'origine 

riferimento non è stata trovata.. 

 
Table 1. Nominal material and geometry properties of the 

tank. 

 Property Design value 

Tank Density (kg/m3) 7850 

Young’s modulus 

(MPa) 

200000 

Poisson's ratio 0.3 

Yield strength 

(MPa) 

235 

Radius of tank (m) 27.432 

Height of tank (m) 15.6 

Shell plate 

thickness (mm) 

33, 29.5, 25.5, 21.5, 

17.5, 14, 10, 8, 8 

Bottom plate 

thickness (mm) 

8 

Liquid Density (kg/m3) 998.21 

Liquid level (m) 14 

4.2 Input parameters and design sites 

In this study, the randomness in the filling level 
of the contained liquid and the ground motion is 
considered. The filling level has been 
demonstrated as the most significant parameter 
that affects the seismic vulnerability of 
unanchored tanks (Phan et al. 2019). A variation 
of the filling level from 50% to 100% (i.e., 7 to 14 
m) of the maximum level is assumed, which 
follows a uniform distribution, while 𝑃𝐺𝐴 follows 
a lognormal distribution with a mean of 0.6 g and 
a variation in logarithmic scale of 0.2. The lower 
and upper bounds of 𝑃𝐺𝐴 are calculated as: 

 

 𝑃𝐺𝐴−
+ = 𝑒𝑙𝑛0.6±0.2 =

0.8 g
0.45 g

       (7) 

 

The input random variables are summarized in 

Table 1. 

 
Table 2. Random variables considered in the model. 

Variable Distribution Parameters 

𝐻 (m) Uniform 𝐿 = 7 m 𝑈 = 14 m 

𝑃𝐺𝐴 (g) Lognormal 𝑚 = 0.6 g 𝑣 = 0.2 

 
The CCD method is used to generate samples 

of the random variables. It is composed of 2𝑛 
points of the full factorial two-level design, with 
all the variables at their extremes, plus a number 
of repetitions of the nominal design, plus 2𝑛 
points obtained by changing one design variable at 
a time by an amount 𝛼. The value of 𝛼 depends on 
the number of experimental runs in the factorial 

portion of the CCD. For two random variables 
presented in Table 2, 9 samples will be obtained 
assuming only one center point. Figures 2 shows 
the CCD for 𝑛 =  2, where 𝛼 = 22/4 = 1.41. The 
CCD table is shown in Table 3, where the 
corresponding values of 𝐻  and 𝑃𝐺𝐴  for each 
sample are also calculated. 

 
Figure 1. Central composite design. 

 
Table 3. Central composite design table. 

N. samples Factors Calculated real values 

𝑋1 𝑋2 𝐻 (m) 𝑃𝐺𝐴 (m) 

1 -1 -1 7.0 0.49 

2 -1 1 7.0 0.73 

3 1 -1 14.0 0.49 

4 1 1 14.0 0.73 

5 -1.41 0 5.6 0.60 

6 1.41 0 15.4 0.60 

7 0 -1.41 10.5 0.45 

8 0 1.41 10.5 0.80 

9 0 0 10.5 0.60 

4.3 3D FE modelling 

The tank-liquid system subjected to earthquake 
loadings is modelled using the FE analysis 
package ABAQUS (SIMULIA 2014). The 
coupled acoustic-structural analysis, which was 
presented and validated by Phan and Paolacci 
(2018), is used in this study. This approach is 
simple and effective to treat numerically, as it 
assumes no material flow and thus no mesh 
distortion. The FE meshes of steel tank consist of 
four-node, doubly curved quadrilateral shell 
elements (S4R). Each node of shell element has 
three translational and three rotational degrees of 
freedom. The liquid is modelled using eight-node 
brick acoustic elements (AC3D8). The acoustic FE 
model is based on the linear wave theory and 
considers the dilatational motion of the liquid. To 
derive the equations for acoustic wave 
propagation, a number of assumptions have to be 
made to simplify the equations of fluid dynamics. 

 



 

 
Figure 2. Boundary conditions of the liquid-tank model. 

The tank-liquid interaction is considered using 
a surface-based tie constraint between the tank 
inner and liquid surface. This constraint is 
formulated based on a master-slave contact 
method, in which normal force is transmitted using 
tied normal contact between both surfaces through 
the simulation. The sloshing waves are considered 
in the liquid model assuming small-amplitude 
gravity waves on the liquid free surface. 

The bottom plate of the tank is unanchored and 
rested on a rigid slab that is modelled using solid 
elements. The successive contact and separation 
between the tank bottom plate and its rigid 
foundation are taken into account by a surface-
based contact modelling algorithm. The boundary 
conditions of the model are shown in Figure 2. 

 
Figure 3. Numerical model of the tank-liquid system. 

Both geometric and material nonlinearities are 
considered in the analysis. The plasticity of the 
steel tank is modelled based on the stress-strain 
curve of the material. The curve obtained from 
mechanical testing is converted into true stress and 
the plastic strain. The water density is considered 
to be 998.21 kg/m3, and its bulk modulus is 2150 
MPa. The Rayleigh mass proportional damping is 
employed for the tank model assuming a damping 
ratio of 2.0%, for the fundamental vibration mode 
of the tank-liquid system. Due to the structural 
symmetry and to reduce the computational cost, 
only half of the tank-liquid system is modelled, 
and symmetry plane boundary conditions are 
employed. The mesh convergence analysis results 
in an optimal mesh size of 0.4 m and 0.8 m in the 
longitudinal direction and the circumferential 

direction, respectively, to achieve acceptable 
accuracy. The mesh near the shell-to-bottom joint 
is a fine mesh of 0.1 m in the longitudinal 
direction. An example of the FE mesh of the 
Sample 6 model is illustrated in Figure 3. 

4.4 Static pushover analyses 

The most severe case, i.e., Sample 6 with the 

highest level of the liquid, is selected for the 

pushover analysis. The aim of the analysis is to 

primarily evaluate the static behaviour of the tank. 

For the development of a static pushover model, 

the acoustic elements are ignored, and a pushover 

loading is used instead. Three loading steps are 

applied as shown in Figure 4, where the 

hydrodynamic load is calculated using the formula 

in the Eurocode 8 (EN1998-4 2006).  

 
Figure 4. Loading steps of the pushover analyses 

 

 
Figure 5. Von Mises stress contour at the last time step of the 
analysis. 

The hydrodynamic pressure acting on the tank 

shell and bottom plate is increased with the 

increase of the ground acceleration until an 

acceleration level around 0.63 g. At this point, the 

surface-based

tie contact

shell

element

 free surface

boundary condition

acoustic

element

general contact solid

element

gravity hydrostatic hydrodynamic



 

numerical instability occurs that is due to the 

failure of the shell-to-bottom connection. 

Static responses in terms of the uplift 

displacement of the bottom edge, the compressive 

and hoop stresses of the shell plate, the Von Mises 

stress, and the equivalent plastic strain of the shell 

plate and shell-to-bottom connection are observed 

for the shell plate and the shell-to-bottom 

connection as shown in Table 4. An example of the 

Von Mises stress contour is shown in Figure 5. 

Table 4. Observed equivalent plastic strain at a ground 

acceleration level of 0.63 g. 

Quantity Shell plate Shell-to-

bottom 

connection 

Uplift displacement (m) - 0.51 

Compressive meridional 

stress (MPa) 

22.5 - 

Hoop stress (MPa) 225 - 

Von Mises stress (MPa) 222 MPa 292 MPa 

Equivalent plastic strain 6.2 × 10−4 1.7 × 10−2 

 

It can be seen that the shell-to-bottom 

connection almost reaches the ultimate point while 

the shell plate is still in the elastic range; this 

demonstrates the vulnerability of the shell-to-

bottom connection in unanchored tank structures. 

The stress level in the connection significantly 

increases due to the uplift of the bottom plate. 

Although a high level of the uplift displacement 

is observed, the buckling of the shell plate is not 

visible. A small value of the compressive 

meridional stress in the shell plate is observed 

while the hoop stress reaches almost the yielding 

point, as illustrated in Table 4. 

The nonlinear static pushover results explicate 

that the most critical failure mode of the tank is the 

failure of the connection. The occurrence of the 

shell plate failure due to the material yielding and 

the shell plate buckling is rather limited. 

In the following, only two critical failure modes 

are considered, i.e., the fracture of the connection 

caused by the rotation demand and the material 

yielding of the shell plate caused by the hoop 

stress. 

4.5 Selection of ground motion records for 

nonlinear time history analyses 

With the aim to demonstrate the capability of 
the method in reducing significantly the number of 
simulations, only eight records are selected and 
used for dynamic time history analyses of the 3D 
FE model. The tank is supposed to be ideally 
placed in one of the most seismically active zones 

in Sicily (Italy), just close to Priolo Gragallo city, 
characterized by soil type B. The records are 
selected for a return period of 2475 years and 
based on a uniform hazard spectrum (solid red line 
in Figure 6) that was obtained from the seismic 
hazard analysis of the site. The records are selected 
so that the median response spectrum (solid black 
line) and median   (16th and 84th percentile) 
have the best fit to that of the target UHS. The 
response spectra of the selected records are shown 
in Figure 6. 

 
Figure 6. UHS-based record selection. 

4.6 Construction of Kriging-based surrogate 

model using nonlinear time history analysis 

results 

As the result of the CCD, 9 model samples with 
different combination of 𝐻  and 𝑃𝐺𝐴  are 
generated. Each sample is modelled using the 3D 
FE model and subjected to 8 selected records. The 
records are scaled with respect to the 𝑃𝐺𝐴 value 
provided in Table 3. Therefore, 72 simulations are 
carried out. An example of the Von Mises stress 
and the equivalent plastic strain contours are 
shown in Figure 7. The response quantities are 
measured at   𝑡 =  4.06 𝑠  from the analysis of 
Sample 6 subjected to Kalamata earthquake. 

It can be seen from the figures that the shell-to-
bottom joint reaches the yielding while the shell 
and bottom plate are still in the elastic region; this 
agrees well with the observation from the 
nonlinear static analysis. 

The time history data of the uplift response at 
two ends of the bottom plate is shown in Figure 8. 
A maximum uplift displacement of 0.5 m is 
recorded. Similarly, the peak seismic response in 
terms of the uplift displacement is measured for all 
the samples. The corresponding rotation demand 
of the joint is then calculated that is a function of 
the uplift displacement, the uplift length, and the 
radius of the tank (EN 1998-4 2006). The hoop 
stress of the shell plate is also measured for each 



 

sample analysis. The stress is calculated as the 
maximum value among those obtained from all 
shell courses. The results in terms of the rotation 
demand of the shell-to-bottom connection and the 
hoop stress of the shell plate are plotted in Figure 
9. It can be seen that Sample 4 and 6 exhibit high 
seismic demands due to the high level of the liquid; 
whereas, the responses obtained from Sample 1 
and 5 are rather small. 

 

 
Figure 7. Example of numerical results in terms of Von 

Mises stress and equivalent plastic strain contours (Sample 

6, Kalamata earthquake, t = 4.06 s). 

 
Figure 8. Time history data of uplift at the left and right ends 
of the bottom plate (Sample 6, Kalamata earthquake).  

The analyses consider the uncertainty of the 

ground motions in terms of 𝑃𝐺𝐴 . At each 𝑃𝐺𝐴 

value, the responses vary due to the effect of the 

frequency content from different ground motions. 

Therefore, the transient analysis results are not 

able to use as an input in the above Kriging model. 

The mean and standard deviation values of the 

response are used instead. 

 

 
Figure 9. Model outputs in terms of the rotation demand of 
the connection and the hoop stress demand of the shell plate. 

 
Kriging models are built for the mean and 

standard deviation of the responses using the 
UQLAB software (Lataniotis et al. 2018), in which 
the linear function is used as the basic function of 
the model. The correlation type is given by the 
separable correlation function, and the correlation 
family is given by the Matern 3/2 kernel function. 
The hyperparameters are  assessed using the 
maximum likelihood estimation. The genetic 
algorithm is adopted to solve the global 
optimization of the model. 

Once the two Kriging models are built, the 
composed Kriging model is then obtained by using 
Equation (6) that is assumed to follow a lognormal 
distribution. 

4.7 Fragility analysis 

The failure of the weld between the bottom 

plate and the shell due to the rotation of the plastic 

hinge is considered. A limit of 0.2 rad is assumed 

for the hinge rotation based on a maximum 

allowable strain of 0.05 (EN 1998-4 2006). On the 

other hand, the stress limit of the material yielding 



 

of the shell plate is 0.9𝜎𝑦, where 𝜎𝑦 is the yielding 

strength of the steel. 
Given the limit states, the fragility curves of the 

corresponding failure modes are developed using 
Monte Carlo simulations that can be carried out 
based on the composed Kriging model in Equation 
(11). The simulations are repeated for each 
specific 𝑃𝐺𝐴 value, for example, in this study, a 
range of 𝑃𝐺𝐴 varying from 0.005 g to 1.2 g with a 
step size of 0.005 g is considered. The data post-
processing on the 100000 observations leads to 
fragility curves of the two failure modes in Figure 
10. To obtain a smooth curve, a large sample set 
must be used; this is only possible when a 
surrogate model is used. 

 
Figure 10. Fragility curves of the shell-to-bottom 

connection failure and the shell plate material yielding 

The fragility curves presented in Figure 10 
show the probabilities of exceeding the rotation 
limit of the plastic high at the connection and the 
yielding stress limit of the shell plate. The 
occurrence probability of the connection failure is 
slightly higher than one of the shell plate yielding. 

 
Figure 11. Fragility curve of the shell-to-bottom joint 

failure considering different ranges of the liquid level. 

The capability of the surrogate model is also 

demonstrated with quickly building fragility 

curves for different ranges of the inputs. For 

example, Figure 11 shows fragility curves of the 

shell-to-bottom connection failure for three 

different ranges of the liquid level. This is not 

possible in traditional approaches, where a large 

number of analyses need to run again. 

5 CONCLUSIONS 

In this paper, a framework of the seismic 
fragility evaluation of aboveground unanchored 
tanks using the Kriging-based surrogate model is 
presented. The surrogate model is developed based 
on a proper design of experiment approach and a 
3D FE model of the tank. Due to the high  
computational cost of refined model simulations, 
the current procedure relies on a limited number of 
dynamic analyses. The Kriging-based surrogate 
model allows for the computation of responses to 
numerous samples of input variables without 
running new finite element analyses. The 
application to a case study of the unanchored tank 
demonstrates the capability of the present 
procedure of obtaining fragility curves for 
different input conditions. 
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