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ABSTRACT  

Past seismic events have demonstrated that industrial plants are highly vulnerable complex structures. Damage of 

any component can cause disruption of process plant functionality leading to direct and indirect economic losses due 

to business interruption. In order to quantify these economic losses, overall plant resilience is required. There are 

several frameworks described in literature, which can quantify the seismic resilience of network infrastructures, 

buildings and critical facilities, however there is a lack of seismic resilience estimation pertaining to industrial 

facilities. This paper presents a method to assess seismic resilience of process plants using probabilistic approach. 

Ability of plant to withstand the perturbation and recovery time, are considered as probabilistic. Monte Carlo 

Simulation is used in two levels, first one to define the most probable seismic damage scenarios while the second  

level is used to generate samples of recovery activities and equipment reconstruction cost in order to  calculate the 

probabilistic recovery and probabilistic economic losses. Integrating business economic losses in this method, 

provides a complete information for decision makers, process planners and emergency managers to support their 

decision making process. Finally, application of methodology to a case study in Italy is illustrated. 

1 INTRODUCTION 

Past seismic events have shown the high 
vulnerability of industrial facilities and 
devastating consequences that can follow their 
failure, such as release of hazardous material, 
production loss, economic losses, environmental 
pollution etc. Kocaeli earthquake (1997), of 
magnitude 7.4, caused important damages to 30% 
of industrial plants of Izmit area, 20% of which got 
repaired within one month while the remaining 
10% was unrepairable, leading to a production loss 
that was estimated around 1-1.5 bn US $ every 
month (Masson et al. 2001). More recent, Tohoku 
earthquake (2011), which was followed by  
tsunami and nuclear accident caused catastrophic 
damages in many fields including industrial 
facilities, where the refinery sector was the one 
which experienced the biggest drop in industrial 
production index (5 from 100) and  had also the 
slowest recovery speed (Kajitani et al. 2013). 
These events have raised the interest of research 
community to develop frameworks not only to for 
risk  calculations but also for resilience 
calculations. 

 
 
There are several resilience models available in 

literature regarding community resilience, civil 
infrastructure systems, critical infrastructure and 
transportation system (Bruneau et al. 2003), 
(Cimellaro et al. 2006, 2009, 2010, 2017), (Tsionis 
2014), (Shafieezadeh et al. 2014), (Ramirez-
Marquez et al 2018), (Didier et al. 2017), while 
resilience models related to process plants are still 
under development.  

Resilience of single unit of process plant has 
been studied by (Mebarki, A., 2016), but 
neglecting plant process flow. Some researches 
has been focused mainly on organizational and 
operational issues including human factor (Dinh et 
al. 2012),  (Rydzak et al. 2016) or others on general 
modelling approach without suggesting any 
quantitative model (Rydzak et al. 2006). 

In this paper a probabilistic resilience model 
based on (Caputo and Paolacci 2017) will be 
presented. Firstly, the resilience model will be 
described. Then the model will be applied to a case 
study that was first analysed in a deterministic way 
by (Kalemi et al. 2019). Recovery curve and 
economic losses will be calculated in probabilistic 



 

way. Finally, results, discussion and future 
research development will be presented.  

2 METHODOLOGY 

2.1 Resilience definition 

Seismic resilience can be defined as ability of a 
system to withstand and rapidly recover from a 
low probability high impact event. Resilience 
index (R) will be defined as area under the curve 
of operational capacity C(t) from the time when a 
seismic event occurs (t0) until a control time (th) 
usually defined from plant owner or decision 
makers. Plant operational capacity curve is shown 
in Figure 1 and characteristic times are : time when 
damage propagation stops (td), time when increase 
in operational capacity starts (ti) and time when 
plant if fully recovered (tr). 

 
Figure 1. Plant operational capacity curve. 

Resilience index will be given in percentage 

and will be calculated using  Equation 1 as shown 

below: 

𝑅 =
1

𝑡ℎ−𝑡0
∫ 𝐶(𝑡)𝑑𝑡
𝑡ℎ
𝑡0

 (1) 

2.2 Resilience model 

The resilience model will consist on eight 
operational steps, using two levels of Monte Carlo 
Simulation (MCS), as shown in Figure 2. 

Step 1, process plant mapping, consists in 
identification of plant critical equipment, plant 
configuration and physical output flows (PF).  

Step 2 consists in construction of Capacity 
Block Diagram, where equipment of each PF are  
grouped in process stages (PS), strictly connected 
in series (Caputo and Paolacci 2017). PS can 
contain equipment in series,  parallel or redundant, 
and their grouping is based on the influence they 
have to the production capacity of PF. When an 
equipment in series is damaged the entire capacity 
of the flow will drop to zero, while for the case of 
damage of any equipment in parallel the capacity 

will drop by the percentage that is covered by that 
equipment.  The capacity of a PF is governed by 
the PS with the lowest capacity. 

In step 3 the General Reconstruction Activity 
Network (GRAN) should be constructed, same as 
the one used in project management   (Vanhoucke 
2012). The GRAN should be constructed 
considering that the plant is completely damaged 
so the all possible reconstruction activities should 
be considered. All recovery activities duration Ti,j, 
which corresponds to j-th restoration activity of i-
th damaged equipment, will be defined as normal 
distribution having a mean and a standard 
deviation, bounded to be positive. In more details 
this step can be found at (Caputo and Paolacci 
2017) and (Kalemi et al. 2019).  

In step 4, the most probable seismic damage 
scenario will be defined. A binary state will be 
assigned to equipment (δ), zero when damaged 
and one when undamaged. Multiple damage states 
of equipment can be considered. At first, seismic 
hazard curve of the site should be estimated using 
Probabilistic Seismic Hazzard Analysis (PSHA) 
(Cornell 1968). Next, vulnerability of equipment 
should be assessed using fragility curves that can 
be taken from literature or can be computed using 
numerical models. Finally, probabilistic seismic 
analysis using MCS will be used in order to define 
most probable seismic damage scenarios, as 
described in (Alessandri et al. 2018).  

 
Figure 2. Operational steps for resilience calculation. 

In step 5, residual capacity C(td) should be 

calculated for each damaged scenario using 

Equation 2 as below: 



 

𝐶(𝑡𝑑) = ∑ 𝑂𝑓𝐶𝑓(𝑡𝑑)𝑓  (2) 

where, Of is the fraction of total plant capacity 

allocated in f-th PF, while Cf(td) is the operational 

capacity of f-th PF at time when disruption has 

finished. Capacity of process flow can be defined 

using Equation 3, where Cs,f is the capacity of s-th 

PS of f-th PF.  

𝐶𝑓 = 𝑀𝑖𝑛{𝐶𝑠,𝑓
𝑠 , 𝐶𝑠,𝑓

𝑝
, 𝐶𝑠,𝑓

𝑟 } (3) 

Capacity of PS with equipment in different 

working state is given in Table 1, where 𝛿𝑖 is the 

damage state variable of i-th equipment, while k is 

the minimum number of redundant equipment that 

need to be functional in order to maintain the full 

capacity of PS with n equal units.  

Table 1. Process Stage Capacity model. 

PS with units 

in series 
𝐶𝑠,𝑓
𝑠 =∏ 𝛿𝑖

𝑖𝜖𝑆[𝑠,𝑓]
 

PS with n 

equal units in 

parallel with 

capacity 1 𝑛⁄  
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PS with 

redundant k out 

of n equal units 𝐶𝑠,𝑓
𝑟 = 

{
 

 1 if ∑ δi≥k
i∈S[f,s]

 

0 if ∑ δi<k
i∈S[f,s]

 

 

In step 6, capacity recovery functions should be 

defined. A damage state coefficient (γi,j), which 

multiplies each Ti,j recovery activities, is used in 

order to define which activities should be carried 

out, in case that i-th equipment is damaged. 

Recovery time of i-th equipment (Tri) will be 

calculated automatically from GRAN using 

Critical Path Method (Vanhoucke 2012). Initial 

value of γi,j will be zero which mean that for 

undamaged state of plant all activities duration 

will be zero, while in case of damage of any i-th 

equipment all γi,j will be switched to 1. 

{
 𝛾𝑖,𝑗 = 1     𝑖𝑓     𝛿𝑖 = 0 

𝛾𝑖,𝑗 = 0     𝑖𝑓     𝛿𝑖 = 1
      (4) 

In order to have a full information set for 

decision makers, plant owners or insurance 

companies, economic losses are integrated in step 

7. Equipment reconstruction cost (ER) will be 

calculated using Equation 4 where the cost of j-th 

restoration task required to bring back into 

functionality i-th damaged equipment will be 

defined as normal distribution as the cost of each 

recovery activity or cost of equipment may vary 

due to inflation or market availability, so for every 

MCS a random Crij will be generated for analysis. 

Business interruption losses (BI) are also included 

in  the model, such as the total economic losses 

(EL) are calculated as sum of ER and BI. 

𝐸𝑅 =  ∑ ∑ 𝛿𝑖𝐶𝑟𝑖𝑗𝑗𝑖                                                            (4) 

𝐵𝐼 =  ∑ ∑ (𝑝𝑓 − 𝐶𝑣𝑢𝑓) [𝐶𝑁𝑓 − 𝐶𝑓(𝑡)]𝛥𝑡𝑧𝑧𝑓       (5) 

Business interruption losses are calculated 

using Equation 5, where pf is the unit selling price 

of the f-th process flow product, Cvuf the variable 

unit production cost of the f-th process flow 

product, CNf is the nominal production output of 

the f-th process flow, Cf(t) is the capacity of f-th 

process flow at time t, and Δtz is the duration of the 

z-th time interval between functional recovery of 

two successive units (Caputo and Paolacci 2017).  

The last step, step 8, deals with processing of 

probabilistic results, derived in second level of 

MCS that includes steps 5 to 7, and it will be 

repeated for each seismic damage scenario of 

interest. Probabilistic recovery curves, 

probabilistic plant recovery time and probabilistic 

economic losses will be shown and discussed in 

this step.  

3 CASE STUDY 

3.1 Description of case study 

A nitric acid plant as described in (Kalemi et al. 
2019) is selected as case study, assumed to be 
located in Priolo Gargallo, south of Italy.  The 
plant has two process flows PF, physical 
production lines, as shown in Figure 3. Process 
flow one delivers 195 ton/day of nitric acid (60% 
concentration) while process flow two delivers 
130 ton/day of nitric acid (40% concentration). It 
consists of equipment of different typologies such 
as horizontal vessels, vertical vessels, steel storage 
tanks, air compressors, pumps, electric unit, 
bleaching columns, refrigeration units and piping 
systems which are given in Table 3. Each PF 
contain two PS with equipment in parallel and one 
PS with equipment in series as shown in CBD in 
Figure 1, which corresponds to step 2. 

The GRAN will be the same as the one used in 
(Kalemi et al. 2019), with the only change that 
duration of each activity will be given as normal 
distribution with a mean equal to deterministic 
value of recovery activity of (Kalemi et al. 2019) 
and a standard deviation equal to 10% of mean 
value.



 

 
Figure 3. Process Flow Diagram of nitric acid plant. 

 
Figure 4. Capacity Block Diagram of nitric acid plant. 

 
Only extensive damage state of equipment will 

be considered in this paper and damaged 
equipment will be assumed to replaced. 
Equipment reconstruction cost is assumed to be a 
normal distribution having a mean equal to 
equipment reconstruction cost given in (Kalemi et 
al. 2019) and a standard deviation of 10% of mean 
as given in Table 3. 

Selling price of 60% nitric acid is 240 €/ton 
while the price of 40% nitric acid is 160 €/ton. 
Variable production cost of 60% nitric and 40% 
nitric are 60€ and 40€, respectively. This data will 
be the input of step 7 in order to define BI losses. 

3.2 Seismic damage scenario definition 

Probabilistic seismic analysis is conducted in 
order to define the most probable seismic damage 
scenarios using PRIAMUS (Corritore et al. 2018) 
software. This step, corresponds with the first 
MCS where earthquake magnitude (m), distance 
(R) and seismogenic zone are randomly sampled 
for each simulation. Equipment vulnerability are 
expressed in fragility curves considering only 
extensive damage state as per Table 3. 

In Table 2 are shown the five most probable 
seismic damage scenarios (SV). The most 
probable seismic damage scenario is when both 
steel storage tanks (E-21 and E-24) fails, having an 
annual probability of occurrence of 1.39E-6, while 
the second most probable damage state is when 
electric unit (E-32) fails, having an annual 
probability of occurrence equal to 9.05E-7. 

Table 2. Most probable seismic damage scenarios. 

# 
Seismic damage scenario 

(damaged units) 

Annual 

Probability 

0 None 0.999 

1 E-21; E-24 1.39e-06 

2 E-32 9.05e-07 

3 E-24 3.22e-07 

4 E-21 2.63e-07 

5 E-7; E-9 1.90e-07 

3.3 Probabilistic resilience and economic 

calculation 

After defining the most probable seismic 
damage scenario, a second Monte Carlo 
simulation will be conducted for each seismic 
damage scenario in order to calculate probabilistic 
resilience and economic losses. In each simulation 
recovery activities and equipment reconstruction 
costs will be selected randomly.  

In Figure 5 are shown the recovery curves of 
three most probable seismic damage scenarios, 
SV1, SV2 and SV3, where the red line corresponds 
to the mean recovery curve. Meanwhile, in Figure 
6 are shown the distribution of maximum recovery 
time of those scenarios for 10000 MCS. Scenario 
#1 is the least resilient one with a mean resilience 
index (Rm=41.6%), while scenario #2 and scenario 
#3 have a mean resilience of (Rm=68.7%) and 
(Rm=77.5%), respectively. In terms of residual 
capacity  SV#3 is the most robust one as after  



 

Table 3. Equipment description, replacement costs and fragility curve parameters. 

Eq. 

Label 
Process Equipment 

Replacement cost 

(€) 

Fragility curve 

D.S. Reference  parameters 

Mean St.dev. PGAm (g) β 

E-1 Ammonia storage vessel 646,000 64,600 0.54 0.46 PL2  Horizontal Vessel [*] 

E-2 Ammonia storage vessel 646,000 64,600 0.54 0.46 PL2  Horizontal Vessel [*] 

E-3 Ammonia Vaporizer 70,000 7,000 0.54 0.46 PL2  Horizontal Vessel [*] 

E-4 Filter 30,000 3,000 1.0 0.6 DS3  Mechanical Equipment [**] 

E-5 Ammonia Super heater 34,000 3,400 0.54 0.46 PL2  Horizontal Vessel [*] 

E-6 Mixer 30,000 3,000 1.0 0.6 DS3  Mechanical Equipment [**] 

E-7 1-st Stage Air Compressor 1,458,000 145,800 0.77 0.65 DS4  Compressor Station [**] 

E-8 Compressor intercooler 61,000 6,100 0.54 0.46 DS4  Horizontal Vessel [*] 

E-9 2-nd Stage Air Compressor 2,722,000 272,200 0.77 0.65 DS4  Compressor Station [**] 

E-10 Reactor 139,000 13,900 0.51 0.45 PL2  Vertical Vessel CL1 [*] 

E-11 Reactor 139,000 13,900 0.51 0.45 PL2  Vertical Vessel CL1 [*] 

E-12 Steam Super-Heater 74,000 7,400 0.54 0.46 PL2  Horizontal Vessel [*] 

E-13 Waste Heat Boiler 86,000 8,600 0.54 0.46 PL2  Horizontal Vessel [*] 

E-14 Tail Gas Pre-heater 72,000 7,200 0.54 0.46 PL2  Horizontal Vessel [*] 

E-15 Cooler/Condenser 186,000 18,600 0.54 0.46 PL2  Vertical Vessel CL1 [*] 

E-16 Oxidation Vessel 101,000 10,100 0.59 0.41 PL2  Vertical Vessel CL2 [*] 

E-17 Secondary Cooler 250,000 25,000 0.54 0.46 PL2  Horizontal Vessel [*] 

E-18 Absorption Column 2,261,000 226,100 0.67 0.37 PL2  Extrapolation [*] 

E-19 Acid Pump 10,000 1,000 1.6 0.6 DS4  Horizontal Pump [**] 

E-20 Bleaching Column 74,000 7,400 0.59 0.41 PL2  Vertical Vessel CL2 [*] 

E-21 Nitric Acid (60%) Tank 1,160,000 116,000 0.68 0.75 DS4  Unanchored Tank [**] 

E-22 Acid Pump 10,000 1,000 1.6 0.6 DS4  Horizontal Pump [**] 

E-23 Bleaching Column 74,000 7,400 0.59 0.41 PL2  Vertical Vessel CL2 [*] 

E-24 Nitric Acid (40%) Tank 696,000 69,600 0.68 0.75 DS4  Unanchored Tank [**] 

E-25 Liquid Vapour Separator 70,000 7,000 0.54 0.46 PL2  Horizontal Vessel [*] 

E-26 Tail Gas Warmer 124,000 12,400 0.54 0.46 PL2  Horizontal Vessel [*] 

E-27 Refrigeration Unit 164,000 16,400 1.0 0.6 DS3  Mechanical Equipment [**] 

E-28 Water pump 3,000 300 1.25 0.6 DS4  Vertical Pump [**] 

E-29 Water pump 3,000 300 1.25 0.6 DS4  Vertical Pump [**] 

E-30 Water pump 3,000 300 1.25 0.6 DS4  Vertical Pump [**] 

E-31 Water pump 3,000 300 1.25 0.6 DS4  Vertical Pump [**] 

E-32 Electric Unit 811,000 81,100 1.0 0.8 DS3  Electric Power [**] 

E-33 Ammonia Pipeline 541,000 54,100 1.0 0.6 DS5 Elevated Pipes [**] 

E-34 Air Pipeline 541,000 54,100 1.0 0.6 DS5 Elevated Pipes [**] 

E-35 Reaction Gas Pipeline 541,000 54,100 1.0 0.6 DS5 Elevated Pipes [**] 

E-36 Steam Pipeline 541,000 54,100 1.0 0.6 DS5 Elevated Pipes [**] 

E-37 Cooling System Pipeline 55,000 5,500 1.0 0.6 DS5 Elevated Pipes [**] 

E-38 PF1 Acid Pipeline 541,000 54,100 1.0 0.6 DS5 Elevated Pipes [**] 

E-39 PF2 Acid Pipeline 541,000 54,100 1.0 0.6 DS5 Elevated Pipes [**] 

*(PEC 2017), **(Hazus)





 

seismic event it can maintain 60% of operational 

capacity while SV#1 and SV#2 are not robust at all 

as their residual capacity drops to zero. In terms of 

maximum mean recovery time, SV#1 has a mean 

of (trm ~184.2 days), SV#2 (trm ~94.9 days) and 

SV#3 (trm ~170.2days). We can observe that SV#3 

even though has a bigger mean maximum recovery 

time than SV#2, it is a more resilient damage 

scenario due to its robustness. 

(a) 

 
(b) 

 
(c) 

 
Figure 5. Probabilistic recovery curve of seismic damage 
scenario: (a) SV#1; (b) SV#2 and (c) SV#3. 

 
Figure 6. Distribution of maximum recovery time of seismic 
damage scenario SV1, SV2 and SV3. 

Distribution of economic losses for all 5 most 

probable seismic damage scenarios are shown in 

Figure 7. Scenario #1 has the biggest EL with a 

mean of approximately 10.8 million euros, while 

scenario #3  has the smallest EL with a mean 

approximately 3.3 million euros. In terms of ER 

costs scenario 5 has the biggest one being around 

4.2 million euros. It is easily noticeable from the 

Figure 7 that the BI has the biggest influence in EL 

being around 78%.  

Analysing both mean annual frequency of 

occurrence of damage scenarios from Table 2 and 

economic losses from Figure 7, it can be concluded 

that seismic damage scenario #1 is the most critical 

one due to the highest mean annual frequency of 

occurrence and highest economic losses. The other 

seismic damage scenarios are comparable to each 

 
Figure 7. Distribution of economic losses. 



 

other and their ranking has to be made by decision 

makers, plant owners based on their priority, mean 

annual frequency of occurrence or economic 

losses or as a combination of both. 

4 CONCLUSIONS 

This paper briefly describes operational steps 
for the calculation of probabilistic seismic 
resilience of process plants including economic 
losses using Monte Carlo simulations.  

Actual plant layout, process flow diagram and 
capacity block diagram are used to calculate plant 
operational capacity. Probabilistic recovery 
functions based on General Reconstruction 
Activity Network are used to calculate the plant 
recovery. Nitric Acid plant is used as a case study 
in order to show the potentiality and applicability 
of the method. 

Steel storage tanks are the most critical 
component of Nitric Acid plant due to high annual 
probability of being seismically damaged and long 
restoration time which leads to low resilience and 
high economic losses, so much attention should be 
paid to this equipment. 

Business interruption losses are the one that 
influence more, around 77% of total economic 
losses, so in order to reduce them, redundant 
equipment should be added in plant especially to 
most vulnerable equipment which work as 
equipment in series for both process flows. 

Results provided from this methodology can 
help insurance companies, facility planners and 
plant owners in decision making process for the 
case of earthquakes.  

Further studies will be focused on including 
more damage states of equipment and also 
accounting for damage propagation. 
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